Modifier and Type | Method and Description |
---|---|
DoubleMatrix<R,C> |
RowLevelFilter.filter(DoubleMatrix<R,C> data) |
DoubleMatrix<R,C> |
ItemLevelFilter.filter(DoubleMatrix<R,C> data) |
Modifier and Type | Method and Description |
---|---|
DoubleMatrix<R,C> |
RowLevelFilter.filter(DoubleMatrix<R,C> data) |
DoubleMatrix<R,C> |
ItemLevelFilter.filter(DoubleMatrix<R,C> data) |
Modifier and Type | Method and Description |
---|---|
static DoubleMatrix<String,String> |
StringToStringSetMap.setMapToMatrix(StringToStringSetMap input) |
Modifier and Type | Class and Description |
---|---|
class |
CompressedSparseDoubleMatrix<R,C>
Supports sparse matrices (where sparse means most values are zero, not that they are missing).
|
class |
DenseDoubleMatrix<R,C>
A dense matrix of doubles that knows about row and column names.
|
class |
FastRowAccessDoubleMatrix<R,C>
Dense 2D matrix implementation designed for very fast access of entire rows.
|
class |
SparseDoubleMatrix<R,C>
A sparse matrix that knows about row and column names.
|
class |
SparseRaggedDoubleMatrix<R,C>
A sparse matrix class where the rows are ragged and compressed.
|
Modifier and Type | Method and Description |
---|---|
DoubleMatrix<R,C> |
SparseRaggedDoubleMatrix.copy() |
DoubleMatrix<R,C> |
SparseDoubleMatrix.copy() |
DoubleMatrix<R,C> |
FastRowAccessDoubleMatrix.copy() |
abstract DoubleMatrix<R,C> |
DoubleMatrix.copy()
Create a deep copy of this
|
DoubleMatrix<R,C> |
DenseDoubleMatrix.copy() |
DoubleMatrix<R,C> |
CompressedSparseDoubleMatrix.copy() |
DoubleMatrix<R,C> |
SparseRaggedDoubleMatrix.getColRange(int startCol,
int endCol) |
DoubleMatrix<R,C> |
SparseDoubleMatrix.getColRange(int startCol,
int endCol) |
DoubleMatrix<R,C> |
FastRowAccessDoubleMatrix.getColRange(int startCol,
int endCol) |
abstract DoubleMatrix<R,C> |
DoubleMatrix.getColRange(int startCol,
int endCol) |
DoubleMatrix<R,C> |
DenseDoubleMatrix.getColRange(int startCol,
int endCol) |
DoubleMatrix<R,C> |
CompressedSparseDoubleMatrix.getColRange(int startCol,
int endCol) |
DoubleMatrix<R,C> |
SparseRaggedDoubleMatrix.getRowRange(int startRow,
int endRow) |
DoubleMatrix<R,C> |
SparseDoubleMatrix.getRowRange(int startRow,
int endRow) |
DoubleMatrix<R,C> |
FastRowAccessDoubleMatrix.getRowRange(int startRow,
int endRow) |
abstract DoubleMatrix<R,C> |
DoubleMatrix.getRowRange(int startRow,
int endRow) |
DoubleMatrix<R,C> |
DenseDoubleMatrix.getRowRange(int startRow,
int endRow) |
DoubleMatrix<R,C> |
CompressedSparseDoubleMatrix.getRowRange(int startRow,
int endRow) |
DoubleMatrix<R,C> |
SparseRaggedDoubleMatrix.subsetColumns(List<C> c) |
DoubleMatrix<R,C> |
SparseDoubleMatrix.subsetColumns(List<C> columns) |
DoubleMatrix<R,C> |
FastRowAccessDoubleMatrix.subsetColumns(List<C> columns) |
abstract DoubleMatrix<R,C> |
DoubleMatrix.subsetColumns(List<C> columns)
Create a copy of this matrix with only the selected columns, in the selected order.
|
DoubleMatrix<R,C> |
DenseDoubleMatrix.subsetColumns(List<C> columns) |
DoubleMatrix<R,C> |
CompressedSparseDoubleMatrix.subsetColumns(List<C> columns) |
DoubleMatrix<R,C> |
SparseRaggedDoubleMatrix.subsetRows(List<R> rowNames) |
DoubleMatrix<R,C> |
SparseDoubleMatrix.subsetRows(List<R> rowNames) |
DoubleMatrix<R,C> |
FastRowAccessDoubleMatrix.subsetRows(List<R> rowNames) |
abstract DoubleMatrix<R,C> |
DoubleMatrix.subsetRows(List<R> rowNames)
Create a copy of this matrix with only the selected rows, in the selected order.
|
DoubleMatrix<R,C> |
DenseDoubleMatrix.subsetRows(List<R> rowNames) |
DoubleMatrix<R,C> |
CompressedSparseDoubleMatrix.subsetRows(List<R> rowNames) |
DoubleMatrix<C,R> |
SparseRaggedDoubleMatrix.transpose() |
DoubleMatrix<C,R> |
SparseDoubleMatrix.transpose() |
DoubleMatrix<C,R> |
FastRowAccessDoubleMatrix.transpose() |
abstract DoubleMatrix<C,R> |
DoubleMatrix.transpose() |
DoubleMatrix<C,R> |
DenseDoubleMatrix.transpose() |
DoubleMatrix<C,R> |
CompressedSparseDoubleMatrix.transpose() |
Modifier and Type | Method and Description |
---|---|
static DenseDoubleMatrix<String,String> |
DoubleMatrixFactory.dense(DoubleMatrix<String,String> T)
Creates a matrix in which the underlying data is a copy; the row and column labels are not copied.
|
Modifier and Type | Field and Description |
---|---|
protected DoubleMatrix<A,B> |
ColorMatrix.maxtrix |
Modifier and Type | Method and Description |
---|---|
DoubleMatrix<R,C> |
MatrixDisplay.getMatrix() |
DoubleMatrix<A,B> |
ColorMatrix.getMatrix() |
DoubleMatrix<A,B> |
ColorMatrix.getMaxtrix() |
Modifier and Type | Method and Description |
---|---|
static <R,C> ColorMatrix<R,C> |
ColorMatrix.newInstance(DoubleMatrix<R,C> matrix) |
Constructor and Description |
---|
ColorMatrix(DoubleMatrix<A,B> matrix) |
ColorMatrix(DoubleMatrix<A,B> matrix,
Color[] colorMap,
Color missingColor) |
MatrixDisplay(DoubleMatrix<R,C> matrix) |
Modifier and Type | Method and Description |
---|---|
protected DoubleMatrix<String,String> |
DoubleMatrixReader.createMatrix(List<cern.colt.list.DoubleArrayList> MTemp,
List<String> rowNames,
List<String> colNames1) |
DoubleMatrix<String,String> |
SparseDoubleMatrixReader.read(InputStream stream)
Read a sparse matrix that is expressed as an adjacency list in a tab-delimited file:
item1 item2 weight
item1 item5 weight
By definition the resulting matrix is square and symmetric.
|
DoubleMatrix<String,String> |
DoubleMatrixReader.read(InputStream stream) |
DoubleMatrix<String,String> |
SparseDoubleMatrixReader.read(InputStream stream,
Collection<String> wantedRowNames) |
DoubleMatrix<String,String> |
DoubleMatrixReader.read(InputStream stream,
Collection<String> wantedRowNames) |
DoubleMatrix<String,String> |
SparseDoubleMatrixReader.read(InputStream stream,
Collection<String> wantedRowNames,
boolean createEmptyRows,
int skipColumns,
int maxRows) |
DoubleMatrix<String,String> |
DoubleMatrixReader.read(InputStream stream,
Collection<String> wantedRowNames,
boolean createEmptyRows,
int skipColumns,
int maxRows) |
DoubleMatrix<String,String> |
DoubleMatrixReader.read(InputStream stream,
Collection<String> wantedRowNames,
int numberOfColumnsToSkip) |
DoubleMatrix<String,String> |
SparseRaggedMatrixReader.read(InputStream stream,
int offset)
Read an entire sparse matrix from a stream (JW format).
|
DoubleMatrix<String,String> |
DoubleMatrixReader.read(String filename) |
DoubleMatrix<String,String> |
DoubleMatrixReader.read(String filename,
Collection<String> wantedRowNames)
Read a matrix from a file, subject to filtering criteria.
|
DoubleMatrix<String,String> |
DoubleMatrixReader.read(String fileName,
Collection<String> wantedRowNames,
int numberOfColumnsToSkip) |
DoubleMatrix<String,String> |
DoubleMatrixReader.read(String filename,
int maxRows) |
DoubleMatrix<String,String> |
SparseRaggedMatrixReader.readFromAdjList(InputStream stream) |
DoubleMatrix<String,String> |
SparseRaggedMatrixReader.readFromAdjList(String fileName)
Read a sparse symmetric square matrix that is expressed as an adjacency list in a tab-delimited file:
item1 item2 weight
item1 item5 weight
IMPORTANT: By definition the resulting matrix is square and symmetric, even if the symmetric edges are not
explicitly listed.
|
DoubleMatrix<String,String> |
SparseDoubleMatrixReader.readJW(InputStream stream)
Read a sparse matrix in "JW" (Jason Weston) format.
|
DoubleMatrix<String,String> |
SparseRaggedMatrixReader.readOneRow(BufferedReader dis,
int offset)
Use this to read one row from a matrix (JW format).
|
Modifier and Type | Method and Description |
---|---|
static <R,C> DoubleMatrix<R,C> |
MatrixStats.convertToLog2Cpm(DoubleMatrix<R,C> matrix,
cern.colt.matrix.DoubleMatrix1D librarySize)
Convert a count matrix to log2 counts per million.
|
static <R,C> DoubleMatrix<R,R> |
MatrixStats.correlationMatrix(DoubleMatrix<R,C> data)
Compute the correlation matrix of the rows of a matrix.
|
static <R,C> DoubleMatrix<R,C> |
MatrixStats.doubleStandardize(DoubleMatrix<R,C> matrix)
Iteratively standardize the columns and rows of the matrix.
|
DoubleMatrix<R,C> |
MatrixNormalizer.quantileNormalize(DoubleMatrix<R,C> matrix)
Rows with all missing will not be returned.
|
static <R,C> DoubleMatrix<R,C> |
MatrixStats.standardize(DoubleMatrix<R,C> matrix)
Scale the rows of the matrix; returns a new matrix.
|
Modifier and Type | Method and Description |
---|---|
static <R,C> cern.colt.matrix.DoubleMatrix1D |
MatrixStats.colSums(DoubleMatrix<R,C> data)
NaN values are omitted from calculations.
|
static <R,C> void |
MatrixStats.convertToLog2(DoubleMatrix<R,C> matrix,
double base)
Convert a log_b-transformed data set to log 2.
|
static <R,C> DoubleMatrix<R,C> |
MatrixStats.convertToLog2Cpm(DoubleMatrix<R,C> matrix,
cern.colt.matrix.DoubleMatrix1D librarySize)
Convert a count matrix to log2 counts per million.
|
static <R,C> DoubleMatrix<R,R> |
MatrixStats.correlationMatrix(DoubleMatrix<R,C> data)
Compute the correlation matrix of the rows of a matrix.
|
static <R,C> SparseDoubleMatrix<R,R> |
MatrixStats.correlationMatrix(DoubleMatrix<R,C> data,
double threshold) |
static <R,C> DoubleMatrix<R,C> |
MatrixStats.doubleStandardize(DoubleMatrix<R,C> matrix)
Iteratively standardize the columns and rows of the matrix.
|
static <R,C> void |
MatrixStats.logTransform(DoubleMatrix<R,C> matrix)
Log-transform the values in a matrix (log base 2).
|
static <R,C> double |
MatrixStats.max(DoubleMatrix<R,C> matrix)
Compute the maximum value in the matrix.
|
static <R,C> cern.colt.list.DoubleArrayList |
MatrixRowStats.means(DoubleMatrix<R,C> M)
Calculates the means of a matrix's rows.
|
static <R,C> double |
MatrixStats.min(DoubleMatrix<R,C> matrix)
Find the minimum of the entire matrix.
|
DoubleMatrix<R,C> |
MatrixNormalizer.quantileNormalize(DoubleMatrix<R,C> matrix)
Rows with all missing will not be returned.
|
static <R,C> void |
MatrixStats.rbfNormalize(DoubleMatrix<R,C> matrixToNormalize,
double sigma)
Normalize a matrix in place to be a transition matrix.
|
static <R,C> cern.colt.list.DoubleArrayList |
MatrixRowStats.sampleStandardDeviations(DoubleMatrix<R,C> M)
Calculates the sample standard deviation of each row of a matrix
|
static <R,C> DoubleMatrix<R,C> |
MatrixStats.standardize(DoubleMatrix<R,C> matrix)
Scale the rows of the matrix; returns a new matrix.
|
static <R,C> cern.colt.list.DoubleArrayList |
MatrixRowStats.sumOfSquares(DoubleMatrix<R,C> M)
Calculates the sum of squares for each row of a matrix
|
static <R,C> cern.colt.list.DoubleArrayList |
MatrixRowStats.sums(DoubleMatrix<R,C> M)
Calculate the sums of a matrix's rows.
|
static <R,C> void |
MatrixStats.unLogTransform(DoubleMatrix<R,C> matrix)
Undo log2 transform.
|
Modifier and Type | Method and Description |
---|---|
DoubleMatrix<Integer,Integer> |
SingularValueDecomposition.getS() |
DoubleMatrix<R,Integer> |
SingularValueDecomposition.getU() |
DoubleMatrix<Integer,C> |
SingularValueDecomposition.getV() |
Constructor and Description |
---|
SingularValueDecomposition(DoubleMatrix<R,C> matrix) |
Modifier and Type | Method and Description |
---|---|
DoubleMatrix<String,String> |
LinearModelSummary.getContrastCoefficients() |
DoubleMatrix<String,String> |
DesignMatrix.getMatrix() |
Constructor and Description |
---|
LeastSquaresFit(DesignMatrix designMatrix,
DoubleMatrix<String,String> data)
Preferred interface if you want control over how the design is set up.
|
LeastSquaresFit(DesignMatrix designMatrix,
DoubleMatrix<String,String> data,
cern.colt.matrix.DoubleMatrix2D weights)
Weighted least squares fit between two matrices
|
LeastSquaresFit(ObjectMatrix<String,String,Object> design,
DoubleMatrix<String,String> b)
NamedMatrix allows easier handling of the results.
|
LeastSquaresFit(ObjectMatrix<String,String,Object> design,
DoubleMatrix<String,String> data,
boolean interactions)
NamedMatrix allows easier handling of the results.
|
LinearModelSummary(String k,
Double[] coefficients,
Double[] residuals,
List<String> terms,
DoubleMatrix<String,String> contrastCoefficients,
Double[] effects,
Double[] stdevUnscaled,
double rsquared,
double adjRsquared,
double fstat,
Integer ndof,
Integer ddof,
GenericAnovaResult anovaResult,
double sigma,
boolean isShrunken) |
MeanVarianceEstimator(DesignMatrix designMatrix,
DoubleMatrix<String,String> data,
cern.colt.matrix.DoubleMatrix1D librarySize)
Preferred interface if you want control over how the design is set up.
|
Modifier and Type | Method and Description |
---|---|
static boolean |
RegressionTesting.closeEnough(DoubleMatrix<?,?> expected,
DoubleMatrix<?,?> actual,
double tolerance)
Test whether two AbstractNamedDoubleMatrix are 'close enough' to call equal.
|
static boolean |
RegressionTesting.closeEnough(DoubleMatrix<?,?> expected,
DoubleMatrix<?,?> actual,
double tolerance)
Test whether two AbstractNamedDoubleMatrix are 'close enough' to call equal.
|
Modifier and Type | Method and Description |
---|---|
DoubleMatrix<String,String> |
RClient.retrieveMatrix(String variableName)
Get a matrix back out of the R context.
|
DoubleMatrix<String,String> |
JRIClient.retrieveMatrix(String variableName) |
DoubleMatrix<String,String> |
RServeClient.retrieveMatrix(String variableName) |
Modifier and Type | Method and Description |
---|---|
String |
RClient.assignMatrix(DoubleMatrix<?,?> matrix)
Assign a 2-d matrix.
|
String |
AbstractRClient.assignMatrix(DoubleMatrix<?,?> matrix) |
String |
RClient.assignMatrix(DoubleMatrix<?,?> matrix,
org.apache.commons.collections4.Transformer rowNameExtractor)
Assign a 2-d matrix.
|
String |
AbstractRClient.assignMatrix(DoubleMatrix<?,?> matrix,
org.apache.commons.collections4.Transformer rowNameExtractor) |
Copyright © 2003–2022 UBC Michael Smith Laboratories. All rights reserved.