public abstract class MetaAnalysis extends Object
In this class "conditional variance" means the variance for one data set. Unconditional means "between data set", or
Constructor and Description |
---|
MetaAnalysis() |
Modifier and Type | Method and Description |
---|---|
protected double |
fisherCombineLogPvalues(cern.colt.list.DoubleArrayList pvals)
Fisher's method for combining p values (Cooper and Hedges 15-8)
Use for p values that have already been log transformed.
|
static double |
fisherCombinePvalues(cern.colt.list.DoubleArrayList pvals)
Fisher's method for combining p values.
|
protected cern.colt.list.DoubleArrayList |
metaFEWeights(cern.colt.list.DoubleArrayList variances)
Weights under a fixed effects model.
|
protected double |
metaRESampleVariance(cern.colt.list.DoubleArrayList effectSizes)
CH sample variance under random effects model, equation 18-20
|
protected double |
metaREVariance(cern.colt.list.DoubleArrayList effectSizes,
cern.colt.list.DoubleArrayList variances,
cern.colt.list.DoubleArrayList weights)
CH equation 18-23.
|
protected cern.colt.list.DoubleArrayList |
metaREWeights(cern.colt.list.DoubleArrayList variances,
double sampleVariance)
Under a random effects model, CH eqn. 18-24, we replace the conditional variance with the sum of the
between-sample variance and the conditional variance.
|
protected double |
metaVariance(cern.colt.list.DoubleArrayList variances)
CH 18-3.
|
protected double |
metaVariance(cern.colt.list.DoubleArrayList weights,
cern.colt.list.DoubleArrayList qualityIndices)
CH 18-3 version 2 for quality weighted. ( page 266 ) in Fixed effects model.
|
protected double |
metaZscore(double metaEffectSize,
double metaVariance)
Test statistic for H0: effectSize == 0.
|
protected double |
qStatistic(cern.colt.list.DoubleArrayList effectSizes,
cern.colt.list.DoubleArrayList variances,
double globalMean)
The "Q" statistic used to test homogeneity of effect sizes.
|
double |
qTest(double Q,
double N)
Test for statistical significance of Q.
|
protected double |
weightedMean(cern.colt.list.DoubleArrayList effectSizes,
cern.colt.list.DoubleArrayList weights)
General formula for weighted mean of effect sizes.
|
protected double |
weightedMean(cern.colt.list.DoubleArrayList effectSizes,
cern.colt.list.DoubleArrayList weights,
cern.colt.list.DoubleArrayList qualityIndices)
General formula for weighted mean of effect sizes including quality index scores for each value.
|
public static double fisherCombinePvalues(cern.colt.list.DoubleArrayList pvals)
pvals
- DoubleArrayListpublic double qTest(double Q, double N)
Q
- - computed using qStatisticN
- - number of studies.qStatistic
protected double fisherCombineLogPvalues(cern.colt.list.DoubleArrayList pvals)
Use for p values that have already been log transformed.
pvals
- DoubleArrayListprotected cern.colt.list.DoubleArrayList metaFEWeights(cern.colt.list.DoubleArrayList variances)
variances
- protected double metaRESampleVariance(cern.colt.list.DoubleArrayList effectSizes)
protected double metaREVariance(cern.colt.list.DoubleArrayList effectSizes, cern.colt.list.DoubleArrayList variances, cern.colt.list.DoubleArrayList weights)
sˆ2 = [Q - ( k - 1 ) ] / cwhere
c = Max(sum_i=1ˆk w_i - [ sum_iˆk w_iˆ2 / sum_iˆk w_i ], 0)
effectSizes
- variances
- weights
- protected cern.colt.list.DoubleArrayList metaREWeights(cern.colt.list.DoubleArrayList variances, double sampleVariance)
v_iˆ* = sigma-hat_thetaˆ2 + v_i.
variances
- Conditional variancessampleVariance
- estimated...somehow.protected double metaVariance(cern.colt.list.DoubleArrayList variances)
v_dot = 1/sum_i=1ˆk ( 1/v_i)
variances
- protected double metaVariance(cern.colt.list.DoubleArrayList weights, cern.colt.list.DoubleArrayList qualityIndices)
v_dot = [ sum_i=1ˆk ( q_i ˆ 2 * w_i) ]/[ sum_i=1ˆk q_i * w_i ]ˆ2
variances
- protected double metaZscore(double metaEffectSize, double metaVariance)
metaEffectSize
- metaVariance
- protected double qStatistic(cern.colt.list.DoubleArrayList effectSizes, cern.colt.list.DoubleArrayList variances, double globalMean)
effectSizes
- DoubleArrayListvariances
- DoubleArrayListglobalMean
- doubleprotected double weightedMean(cern.colt.list.DoubleArrayList effectSizes, cern.colt.list.DoubleArrayList weights)
In HS, the weights are simply the sample sizes. For CH, the weights are 1/v for a fixed effect model. Under a random effects model, we would use 1/(v + v_bs) where v_bs is the between-studies variance.
effectSizes
- sampleSizes
- protected double weightedMean(cern.colt.list.DoubleArrayList effectSizes, cern.colt.list.DoubleArrayList weights, cern.colt.list.DoubleArrayList qualityIndices)
effectSizes
- sampleSizes
- qualityIndices
- Copyright © 2003–2023 UBC Michael Smith Laboratories. All rights reserved.