public class CorrelationEffectMetaAnalysis extends MetaAnalysis
Constructor and Description |
---|
CorrelationEffectMetaAnalysis() |
CorrelationEffectMetaAnalysis(boolean fixed,
boolean transform) |
Modifier and Type | Method and Description |
---|---|
protected double |
fisherTransformedSamplingVariance(double sampleSize)
Equation 18-8 from CH.
|
protected cern.colt.list.DoubleArrayList |
fisherTransformedSamplingVariances(cern.colt.list.DoubleArrayList sampleSizes)
Run equation CH 18-8 on a list of sample sizes.
|
double |
getBsv() |
double |
getE() |
double |
getN() |
double |
getP() |
double |
getQ() |
double |
getV() |
double |
getZ() |
double |
run(cern.colt.list.DoubleArrayList effects,
cern.colt.list.DoubleArrayList sampleSizes)
Following CH section 2.2.
|
protected static double |
samplingVariance(double r,
double numsamples)
Equation 18-10 from CH.
|
protected cern.colt.list.DoubleArrayList |
samplingVariances(cern.colt.list.DoubleArrayList effectSizes,
cern.colt.list.DoubleArrayList sampleSizes)
Run equation CH 18-10 on a list of sample sizes and effects.
|
void |
setFixed(boolean fixed) |
void |
setTransform(boolean transform) |
fisherCombineLogPvalues, fisherCombinePvalues, metaFEWeights, metaRESampleVariance, metaREVariance, metaREWeights, metaVariance, metaVariance, metaZscore, qStatistic, qTest, weightedMean, weightedMean
public CorrelationEffectMetaAnalysis()
public CorrelationEffectMetaAnalysis(boolean fixed, boolean transform)
protected static double samplingVariance(double r, double numsamples)
v_i = ( 1 - r_i ˆ 2 ) ˆ 2 / ( n_i - 1 )
I added a regularization to this, so that we don't get ridiculous variances when correlations are close to 1 (this happens). If the correlation is very close to 1 (or -1), we fudge it to be a value less close to 1 (e.g., 0.999)
r
- n
- public double getBsv()
public double getE()
public double getN()
public double getP()
public double getQ()
public double getV()
public double getZ()
public double run(cern.colt.list.DoubleArrayList effects, cern.colt.list.DoubleArrayList sampleSizes)
There are four possible cases (for now):
correlations
- - NOT fisher transformed. This routine takes care of that.sampleSizes
- public void setFixed(boolean fixed)
public void setTransform(boolean transform)
protected double fisherTransformedSamplingVariance(double sampleSize)
v_i = 1 / ( n_i - 3 )
n
- protected cern.colt.list.DoubleArrayList fisherTransformedSamplingVariances(cern.colt.list.DoubleArrayList sampleSizes)
sampleSizes
- protected cern.colt.list.DoubleArrayList samplingVariances(cern.colt.list.DoubleArrayList effectSizes, cern.colt.list.DoubleArrayList sampleSizes)
effectSizes
- sampleSizes
- samplingVariance
Copyright © 2003–2023 UBC Michael Smith Laboratories. All rights reserved.