public class Smooth extends Object
Constructor and Description |
---|
Smooth() |
Modifier and Type | Method and Description |
---|---|
static double[] |
interpolate(double[] x,
double[] y,
double[] xInterpolate)
Linearlly interpolate values from a given data set
Similar implementation of R's stats.approxfun(..., rule = 2) where values outside the interval ['min(x)',
'max(x)'] get the value at the closest data extreme.
|
static cern.colt.matrix.DoubleMatrix2D |
loessFit(cern.colt.matrix.DoubleMatrix2D xy) |
static cern.colt.matrix.DoubleMatrix2D |
loessFit(cern.colt.matrix.DoubleMatrix2D xy,
double bandwidth)
Computes a loess regression line to fit the data
|
static cern.colt.matrix.DoubleMatrix1D |
movingAverage(cern.colt.matrix.DoubleMatrix1D m,
int windowSize)
Simple moving average that sums the points "backwards".
|
public static cern.colt.matrix.DoubleMatrix1D movingAverage(cern.colt.matrix.DoubleMatrix1D m, int windowSize)
m
- windowSize
- public static cern.colt.matrix.DoubleMatrix2D loessFit(cern.colt.matrix.DoubleMatrix2D xy)
xy
- public static cern.colt.matrix.DoubleMatrix2D loessFit(cern.colt.matrix.DoubleMatrix2D xy, double bandwidth)
xy
- data to be fitbandwidth
- the span of the smoother (from 2/n to 1 where n is the number of points in xy)public static double[] interpolate(double[] x, double[] y, double[] xInterpolate)
x
- the training set of x valuesy
- the training set of y valuesxInterpolate
- the set of x values to interpolateCopyright © 2003–2023 UBC Michael Smith Laboratories. All rights reserved.