public class Distance extends Object
Constructor and Description |
---|
Distance() |
Modifier and Type | Method and Description |
---|---|
static double |
correlationOfStandardized(double[] xe,
double[] ye)
Highly optimized implementation of the Pearson correlation.
|
static double |
correlationOfStandardized(cern.colt.list.DoubleArrayList x,
cern.colt.list.DoubleArrayList y)
Like correlationofNormedFast, but takes DoubleArrayLists as inputs, handles missing values correctly, and does
more error checking.
|
static double |
euclDistance(cern.colt.list.DoubleArrayList x,
cern.colt.list.DoubleArrayList y)
Calculate the Euclidean distance between two vectors.
|
static double |
manhattanDistance(cern.colt.list.DoubleArrayList x,
cern.colt.list.DoubleArrayList y)
Calculate the Manhattan distance between two vectors.
|
static double |
spearmanRankCorrelation(cern.colt.list.DoubleArrayList x)
Convenience function to compute the rank correlation when we just want to know if the values are "in order".
|
static double |
spearmanRankCorrelation(cern.colt.list.DoubleArrayList x,
cern.colt.list.DoubleArrayList y)
Spearman Rank Correlation.
|
public static double correlationOfStandardized(double[] xe, double[] ye)
xe
- A standardized vectorye
- A standardized vectorpublic static double correlationOfStandardized(cern.colt.list.DoubleArrayList x, cern.colt.list.DoubleArrayList y)
x
- A standardized vectory
- A standardized vectorpublic static double euclDistance(cern.colt.list.DoubleArrayList x, cern.colt.list.DoubleArrayList y)
x
- DoubleArrayListy
- DoubleArrayListpublic static double manhattanDistance(cern.colt.list.DoubleArrayList x, cern.colt.list.DoubleArrayList y)
x
- DoubleArrayListy
- DoubleArrayListpublic static double spearmanRankCorrelation(cern.colt.list.DoubleArrayList x)
x
- public static double spearmanRankCorrelation(cern.colt.list.DoubleArrayList x, cern.colt.list.DoubleArrayList y)
x
- DoubleArrayListy
- DoubleArrayListCopyright © 2003–2023 UBC Michael Smith Laboratories. All rights reserved.