View Javadoc
1   /*
2    * The baseCode project
3    *
4    * Copyright (c) 2011 University of British Columbia
5    *
6    * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
7    * the License. You may obtain a copy of the License at
8    *
9    * http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
12   * an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
13   * specific language governing permissions and limitations under the License.
14   */
15  package ubic.basecode.math.linearmodels;
16  
17  import static org.junit.Assert.assertArrayEquals;
18  import static org.junit.Assert.assertEquals;
19  import static org.junit.Assert.assertNotNull;
20  import static org.junit.Assert.assertNull;
21  import static org.junit.Assert.assertTrue;
22  
23  import java.text.DecimalFormat;
24  import java.text.NumberFormat;
25  import java.util.List;
26  import java.util.Locale;
27  import java.util.Map;
28  import java.util.zip.GZIPInputStream;
29  
30  import org.apache.commons.math3.distribution.FDistribution;
31  import org.junit.Test;
32  
33  import cern.colt.list.DoubleArrayList;
34  import cern.colt.matrix.DoubleMatrix1D;
35  import cern.colt.matrix.DoubleMatrix2D;
36  import cern.colt.matrix.impl.DenseDoubleMatrix2D;
37  import cern.colt.matrix.linalg.Algebra;
38  import cern.jet.math.Functions;
39  import ubic.basecode.dataStructure.matrix.DenseDoubleMatrix;
40  import ubic.basecode.dataStructure.matrix.DenseDoubleMatrix1D;
41  import ubic.basecode.dataStructure.matrix.DoubleMatrix;
42  import ubic.basecode.dataStructure.matrix.ObjectMatrix;
43  import ubic.basecode.dataStructure.matrix.ObjectMatrixImpl;
44  import ubic.basecode.dataStructure.matrix.StringMatrix;
45  import ubic.basecode.io.reader.DoubleMatrixReader;
46  import ubic.basecode.io.reader.StringMatrixReader;
47  import ubic.basecode.io.writer.MatrixWriter;
48  import ubic.basecode.math.DescriptiveWithMissing;
49  import ubic.basecode.math.MatrixStats;
50  
51  /**
52   * @author paul
53   */
54  public class LeastSquaresFitTest {
55  
56      /**
57       * @throws Exception
58       */
59      @Test
60      public void testLSFOneContinuousWithMissing3() throws Exception {
61          DoubleMatrixReader f = new DoubleMatrixReader();
62          DoubleMatrix<String, String> testMatrix = f.read( this.getClass().getResourceAsStream(
63                  "/data/example.madata.withmissing.small.txt" ) );
64  
65          ObjectMatrix<String, String, Object> design = new ObjectMatrixImpl<>( 9, 1 );
66          design.set( 0, 0, 0.12 );
67          design.set( 1, 0, 0.24 );
68          design.set( 2, 0, 0.48 );
69          design.set( 3, 0, 0.96 );
70          design.set( 4, 0, 0.12 );
71          design.set( 5, 0, 0.24 );
72          design.set( 6, 0, 0.48 );
73          design.set( 7, 0, 0.96 );
74          design.set( 8, 0, 0.96 );
75  
76          design.setRowNames( testMatrix.getColNames() );
77          design.addColumnName( "Value" );
78  
79          LeastSquaresFit fit = new LeastSquaresFit( design, testMatrix );
80  
81          Map<String, LinearModelSummary> sums = fit.summarizeByKeys( true );
82  
83          LinearModelSummary s = sums.get( "228980_at" ); // has missing
84          assertNotNull( s );
85          assertEquals( 0.1495, s.getF(), 0.01 );
86          assertEquals( 0.7123, s.getP(), 0.001 );
87          assertEquals( 10.9180, s.getContrastCoefficients().get( 0, 0 ), 0.001 );
88          assertEquals( 0.712, s.getContrastCoefficients().get( 1, 3 ), 0.001 ); // pvalue
89          assertEquals( 6, s.getResidualDof().intValue() );
90          GenericAnovaResult a = s.getAnova();
91          assertEquals( 0.1495, a.getMainEffectF( "Value" ), 0.0001 );
92          assertEquals( 1, a.getMainEffectDof( "Value" ).intValue() );
93          assertEquals( 6, a.getResidualDf().intValue() );
94  
95          FDistribution fd = new FDistribution( 1, 6 );
96          double p = 1.0 - fd.cumulativeProbability( 0.1495 );
97          assertEquals( 0.7123, p, 0.0001 );
98          assertEquals( 0.7123, a.getMainEffectP( "Value" ), 0.0001 );
99  
100         s = sums.get( "1553129_at" );
101         assertNotNull( s );
102         assertEquals( 2.095, s.getF(), 0.01 );
103         assertEquals( 0.1911, s.getP(), 0.001 );
104         assertEquals( 3.78719, s.getContrastCoefficients().get( 0, 0 ), 0.001 );
105         assertEquals( 0.191, s.getContrastCoefficients().get( 1, 3 ), 0.001 ); // this ordering might change?
106         a = s.getAnova();
107         assertNotNull( a );
108         assertEquals( 0.1911, a.getMainEffectP( "Value" ), 0.0001 );
109 
110         s = fit.summarize( 14 );
111         assertNotNull( s );
112         assertEquals( "214502_at", s.getKey() );// has missing
113         assertEquals( 1.992, s.getF(), 0.01 );
114         assertEquals( 0.2172, s.getP(), 0.001 );
115         assertEquals( 4.2871, s.getContrastCoefficients().get( 0, 0 ), 0.001 );
116         assertEquals( 0.217, s.getContrastCoefficients().get( 1, 3 ), 0.001 );
117 
118         s = sums.get( "232018_at" );
119         assertNotNull( s );
120         assertEquals( 1.381, s.getF(), 0.01 );
121         assertEquals( 0.2783, s.getP(), 0.001 );
122         assertEquals( 6.6537, s.getContrastCoefficients().get( 0, 0 ), 0.001 );
123         assertEquals( 0.278, s.getContrastCoefficients().get( 1, 3 ), 0.001 );
124         a = s.getAnova();
125         assertNotNull( a );
126         assertEquals( 0.2783, a.getMainEffectP( "Value" ), 0.0001 );
127         s = sums.get( "228980_at" ); // has missing
128         assertNotNull( s );
129         assertEquals( 0.1495, s.getF(), 0.01 );
130         assertEquals( 0.7123, s.getP(), 0.001 );
131         assertEquals( 10.9180, s.getContrastCoefficients().get( 0, 0 ), 0.001 );
132         assertEquals( 0.712, s.getContrastCoefficients().get( 1, 3 ), 0.001 );
133         a = s.getAnova();
134         assertNotNull( a );
135         assertEquals( 0.7123, a.getMainEffectP( "Value" ), 0.0001 );
136     }
137 
138     /**
139      * @throws Exception
140      */
141     @Test
142     public void testLSFThreeLevelsOnecontinous2() throws Exception {
143         DoubleMatrixReader f = new DoubleMatrixReader();
144         DoubleMatrix<String, String> testMatrix = f.read( this.getClass().getResourceAsStream(
145                 "/data/example.madata.small.txt" ) );
146 
147         ObjectMatrix<String, String, Object> design = new ObjectMatrixImpl<>( 9, 2 );
148 
149         design.set( 0, 0, "A" );
150         design.set( 1, 0, "A" );
151         design.set( 2, 0, "A" );
152         design.set( 3, 0, "B" );
153         design.set( 4, 0, "B" );
154         design.set( 5, 0, "B" );
155         design.set( 6, 0, "C" );
156         design.set( 7, 0, "C" );
157         design.set( 8, 0, "C" );
158         design.set( 0, 1, 0.12 );
159         design.set( 1, 1, 0.24 );
160         design.set( 2, 1, 0.48 );
161         design.set( 3, 1, 0.96 );
162         design.set( 4, 1, 0.12 );
163         design.set( 5, 1, 0.24 );
164         design.set( 6, 1, 0.48 );
165         design.set( 7, 1, 0.96 );
166         design.set( 8, 1, 0.96 );
167 
168         design.setRowNames( testMatrix.getColNames() );
169         design.addColumnName( "Factor" );
170         design.addColumnName( "Value" );
171 
172         LeastSquaresFit fit = new LeastSquaresFit( design, testMatrix );
173 
174         DoubleMatrix2D coeffs = fit.getCoefficients();
175         assertEquals( 3.7458080, coeffs.get( 0, 0 ), 0.0001 );
176         assertEquals( -0.4388889, coeffs.get( 1, 2 ), 0.0001 );
177         assertEquals( 0.5709091, coeffs.get( 2, 10 ), 0.0001 );
178         assertEquals( 0.04856061, coeffs.get( 2, 18 ), 0.0001 );
179         assertEquals( -1.1363636, coeffs.get( 3, 10 ), 0.0001 );
180         assertEquals( 0.11174242, coeffs.get( 3, 18 ), 0.0001 );
181 
182         DoubleMatrix2D fitted = fit.getFitted();
183 
184         assertEquals( 3.764747, fitted.get( 0, 0 ), 0.0001 );
185         assertEquals( 6.043990, fitted.get( 1, 3 ), 0.0001 );
186         assertEquals( 10.858586, fitted.get( 7, 2 ), 0.0001 );
187         assertEquals( 6.307879, fitted.get( 18, 8 ), 0.0001 );
188 
189         List<GenericAnovaResult> anova = fit.anova();
190         assertEquals( 19, anova.size() );
191     }
192 
193     /**
194      * @throws Exception
195      */
196     @Test
197     public void testLSFThreeLevelsOneContinuousWithMissing3() throws Exception {
198         DoubleMatrixReader f = new DoubleMatrixReader();
199         DoubleMatrix<String, String> testMatrix = f.read( this.getClass().getResourceAsStream(
200                 "/data/example.madata.withmissing.small.txt" ) );
201 
202         ObjectMatrix<String, String, Object> design = new ObjectMatrixImpl<>( 9, 2 );
203 
204         design.set( 0, 0, "A" );
205         design.set( 1, 0, "A" );
206         design.set( 2, 0, "A" );
207         design.set( 3, 0, "B" );
208         design.set( 4, 0, "B" );
209         design.set( 5, 0, "B" );
210         design.set( 6, 0, "C" );
211         design.set( 7, 0, "C" );
212         design.set( 8, 0, "C" );
213         design.set( 0, 1, 0.12 );
214         design.set( 1, 1, 0.24 );
215         design.set( 2, 1, 0.48 );
216         design.set( 3, 1, 0.96 );
217         design.set( 4, 1, 0.12 );
218         design.set( 5, 1, 0.24 );
219         design.set( 6, 1, 0.48 );
220         design.set( 7, 1, 0.96 );
221         design.set( 8, 1, 0.96 );
222 
223         design.setRowNames( testMatrix.getColNames() );
224         design.addColumnName( "Factor" );
225         design.addColumnName( "Value" );
226 
227         LeastSquaresFit fit = new LeastSquaresFit( design, new DenseDoubleMatrix2D( testMatrix.asArray() ) );
228 
229         DoubleMatrix2D coeffs = fit.getCoefficients();
230         assertEquals( 3.7458080, coeffs.get( 0, 0 ), 0.0001 );
231         assertEquals( -0.4388889, coeffs.get( 1, 2 ), 0.0001 );
232         assertEquals( 0.5709091, coeffs.get( 2, 10 ), 0.0001 );
233         assertEquals( 0.04856061, coeffs.get( 2, 18 ), 0.0001 );
234         assertEquals( -1.1363636, coeffs.get( 3, 10 ), 0.0001 );
235         assertEquals( 0.11174242, coeffs.get( 3, 18 ), 0.0001 );
236 
237         DoubleMatrix2D fitted = fit.getFitted();
238 
239         assertEquals( 3.764747, fitted.get( 0, 0 ), 0.0001 );
240         assertEquals( 6.043990, fitted.get( 1, 3 ), 0.0001 );
241         assertEquals( 10.8333, fitted.get( 7, 2 ), 0.0001 );
242         assertEquals( 6.307879, fitted.get( 18, 8 ), 0.0001 );
243 
244         List<GenericAnovaResult> anova = fit.anova();
245 
246         assertEquals( 19, anova.size() );
247     }
248 
249     /**
250      * @throws Exception
251      */
252     @Test
253     public void testLSFTwoLevels() throws Exception {
254         DoubleMatrixReader f = new DoubleMatrixReader();
255         DoubleMatrix<String, String> testMatrix = f.read( this.getClass().getResourceAsStream(
256                 "/data/example.madata.small.txt" ) );
257 
258         ObjectMatrix<String, String, Object> design = new ObjectMatrixImpl<>( 9, 1 );
259 
260         design.set( 0, 0, "A" );
261         design.set( 1, 0, "A" );
262         design.set( 2, 0, "A" );
263         design.set( 3, 0, "A" );
264         design.set( 4, 0, "B" );
265         design.set( 5, 0, "B" );
266         design.set( 6, 0, "B" );
267         design.set( 7, 0, "B" );
268         design.set( 8, 0, "B" );
269         design.setRowNames( testMatrix.getColNames() );
270         design.addColumnName( "Factor" );
271 
272         LeastSquaresFit fit = new LeastSquaresFit( design, testMatrix );
273 
274         Map<String, LinearModelSummary> sums = fit.summarizeByKeys( true );
275 
276         LinearModelSummary s = sums.get( "1553129_at" );
277         assertEquals( 0.182999, s.getF(), 0.0001 );
278         assertEquals( 0.6817, s.getP(), 0.001 );
279         assertEquals( 3.84250, s.getContrastCoefficients().get( 0, 0 ), 0.001 );
280         assertEquals( 0.682, s.getContrastCoefficients().get( 1, 3 ), 0.001 ); // pvalue.
281 
282         Double[] effects = s.getEffects();
283         assertEquals( -11.58333, effects[0], 0.0001 ); // hm.
284         assertEquals( 0.04999, effects[1], 0.0001 ); //hm
285 
286         Double[] stdevUnscaled = s.getStdevUnscaled(); //
287         assertEquals( 0.5, stdevUnscaled[0], 0.0001 );
288         assertEquals( 0.6708203932, stdevUnscaled[1], 0.0001 );
289 
290         Double sigma = s.getSigma();
291         assertEquals( 0.11673841331, sigma, 0.0001 );
292 
293         s = sums.get( "232018_at" );
294         assertEquals( -18.9866667, s.getEffects()[0], 0.0001 ); // hm.
295         assertEquals( 0.1714319, s.getEffects()[1], 0.0001 ); //hm
296         assertEquals( 0.07879, s.getF(), 0.01 );
297         assertEquals( 0.787, s.getP(), 0.001 );
298         assertEquals( 6.2650, s.getContrastCoefficients().get( 0, 0 ), 0.001 );
299         assertEquals( 0.787, s.getContrastCoefficients().get( 1, 3 ), 0.001 );
300         sigma = s.getSigma();
301         assertEquals( 0.61072556381, sigma, 0.0001 );
302     }
303 
304     /**
305      * Many missing values; Two factors, two levels + interaction.
306      *
307      * @throws Exception
308      */
309     @Test
310     public void testLSFTwoLevels2() throws Exception {
311         DoubleMatrixReader f = new DoubleMatrixReader();
312         DoubleMatrix<String, String> testMatrix = f.read( this.getClass().getResourceAsStream(
313                 "/data/lmtest1.dat.manymissing.txt" ) );
314 
315         StringMatrixReader of = new StringMatrixReader();
316         StringMatrix<String, String> sampleInfo = of.read( this.getClass()
317                 .getResourceAsStream( "/data/lmtest1.des.txt" ) );
318 
319         DesignMatrix d = new DesignMatrix( sampleInfo, true );
320         d.addInteraction();
321 
322         LeastSquaresFit fit = new LeastSquaresFit( d, testMatrix );
323         Map<String, LinearModelSummary> sums = fit.summarizeByKeys( true );
324         assertEquals( 100, sums.size() );
325 
326         for ( LinearModelSummary lms : sums.values() ) {
327             GenericAnovaResult a = lms.getAnova();
328             assertNotNull( a );
329             Double interactionEffectP = a.getInteractionEffectP();
330             assertNotNull( interactionEffectP );
331         }
332 
333     }
334 
335     /**
336      * @throws Exception
337      */
338     @Test
339     public void testLSFTwoLevels3() throws Exception {
340         DoubleMatrixReader f = new DoubleMatrixReader();
341         DoubleMatrix<String, String> testMatrix = f.read( this.getClass().getResourceAsStream(
342                 "/data/anova-test-data.txt" ) );
343 
344         StringMatrixReader of = new StringMatrixReader();
345         StringMatrix<String, String> sampleInfo = of.read( this.getClass().getResourceAsStream(
346                 "/data/anova-test-des.txt" ) );
347 
348         DesignMatrix d = new DesignMatrix( sampleInfo, true );
349         d.addInteraction( "factor1", "factor2" );
350 
351         LeastSquaresFit fit = new LeastSquaresFit( d, testMatrix );
352         Map<String, LinearModelSummary> sums = fit.summarizeByKeys( true );
353         assertEquals( 100, sums.size() );
354 
355         for ( LinearModelSummary lms : sums.values() ) {
356             GenericAnovaResult a = lms.getAnova();
357             assertNotNull( a );
358             Double interactionEffectP = a.getInteractionEffectP();
359             assertNotNull( interactionEffectP );
360         }
361 
362         assertEquals( 0.0048, sums.get( "probe_4" ).getMainEffectP( "factor1" ), 0.0001 );
363         assertEquals( 5.158e-10, sums.get( "probe_10" ).getMainEffectP( "factor1" ), 1e-12 );
364         assertEquals( 0.6888, sums.get( "probe_98" ).getMainEffectP( "factor2" ), 1e-4 );
365         assertEquals( 0.07970, sums.get( "probe_10" ).getMainEffectP( "factor2" ), 1e-4 );
366 
367     }
368 
369     /**
370      * @throws Exception
371      */
372     @Test
373     public void testLSFTwoLevelsOneContinuous() throws Exception {
374         DoubleMatrixReader f = new DoubleMatrixReader();
375         DoubleMatrix<String, String> testMatrix = f.read( this.getClass().getResourceAsStream(
376                 "/data/example.madata.small.txt" ) );
377 
378         ObjectMatrix<String, String, Object> design = new ObjectMatrixImpl<>( 9, 2 );
379 
380         design.set( 0, 0, "A" );
381         design.set( 1, 0, "A" );
382         design.set( 2, 0, "A" );
383         design.set( 3, 0, "A" );
384         design.set( 4, 0, "B" );
385         design.set( 5, 0, "B" );
386         design.set( 6, 0, "B" );
387         design.set( 7, 0, "B" );
388         design.set( 8, 0, "B" );
389         design.set( 0, 1, 0.12 );
390         design.set( 1, 1, 0.24 );
391         design.set( 2, 1, 0.48 );
392         design.set( 3, 1, 0.96 );
393         design.set( 4, 1, 0.12 );
394         design.set( 5, 1, 0.24 );
395         design.set( 6, 1, 0.48 );
396         design.set( 7, 1, 0.96 );
397         design.set( 8, 1, 0.96 );
398 
399         design.setRowNames( testMatrix.getColNames() );
400         design.addColumnName( "Factor" );
401         design.addColumnName( "Value" );
402 
403         LeastSquaresFit fit = new LeastSquaresFit( design, testMatrix );
404 
405         DoubleMatrix2D coeffs = fit.getCoefficients();
406         assertEquals( 3.77868, coeffs.get( 0, 0 ), 0.0001 );
407         assertEquals( 0.24476, coeffs.get( 1, 2 ), 0.0001 );
408         assertEquals( -0.680449, coeffs.get( 2, 10 ), 0.0001 );
409         assertEquals( 0.114084, coeffs.get( 2, 18 ), 0.0001 );
410 
411         DoubleMatrix2D fitted = fit.getFitted();
412 
413         assertEquals( 3.795698, fitted.get( 0, 0 ), 0.0001 );
414         assertEquals( 5.497165, fitted.get( 1, 3 ), 0.0001 );
415         assertEquals( 10.879917, fitted.get( 7, 2 ), 0.0001 );
416         assertEquals( 6.346546, fitted.get( 18, 8 ), 0.0001 );
417 
418         List<GenericAnovaResult> anova = fit.anova();
419         assertEquals( 19, anova.size() );
420         Map<String, LinearModelSummary> sums = fit.summarizeByKeys( true );
421 
422         LinearModelSummary s = sums.get( "1553129_at" );
423         assertEquals( 0.9389, s.getF(), 0.01 );
424         assertEquals( 0.4418, s.getP(), 0.001 );
425         assertEquals( 3.77868, s.getContrastCoefficients().get( 0, 0 ), 0.001 );
426         assertEquals( 0.810, s.getContrastCoefficients().get( 1, 3 ), 0.001 ); // this ordering might change?
427         GenericAnovaResult a = s.getAnova();
428         assertEquals( 0.2429, a.getMainEffectP( "Value" ), 0.0001 );
429 
430         s = sums.get( "232018_at" );
431         assertEquals( 0.7167, s.getF(), 0.01 );
432         assertEquals( 0.5259, s.getP(), 0.001 );
433         assertEquals( 6.5712, s.getContrastCoefficients().get( 0, 0 ), 0.001 );
434         assertEquals( 0.664, s.getContrastCoefficients().get( 1, 3 ), 0.001 );
435         a = s.getAnova();
436         assertEquals( 0.2893, a.getMainEffectP( "Value" ), 0.0001 );
437 
438         // 232018_at // based on rstudent() in R.
439         DoubleMatrix2D studentizedResiduals = fit.getStudentizedResiduals();
440         // log.info( studentizedResiduals.viewRow( 10 ) );
441         double[] expectedStudentizedResiduals = new double[] { -0.34655041, 1.46251738, -0.61403124, -0.34663812,
442                 -1.51245468, 0.06875469, 1.45818880, 1.02811044, -1.31696150 };
443 
444         for ( int i = 0; i < 9; i++ ) {
445             assertEquals( expectedStudentizedResiduals[i], studentizedResiduals.viewRow( 10 ).get( i ), 0.001 );
446         }
447 
448         // assertEquals( 1.1, DescriptiveWithMissing.variance( new DoubleArrayList( expectedStudentizedResiduals ) ),
449         // 0.1 );
450 
451         assertEquals( 1.1,
452                 DescriptiveWithMissing.variance( new DoubleArrayList( studentizedResiduals.viewRow( 10 ).toArray() ) ),
453                 0.1 );
454 
455         // 1553129_at // based on rstudent() in R.
456         studentizedResiduals = fit.getStudentizedResiduals();
457         expectedStudentizedResiduals = new double[] { 0.46128657, -5.49429390, 0.84157385, 1.10053286, 1.10538546,
458                 -0.01706794, -0.05318259, -0.56926585, -0.35107932 };
459         for ( int i = 0; i < 9; i++ ) {
460             assertEquals( expectedStudentizedResiduals[i], studentizedResiduals.viewRow( 0 ).get( i ), 0.001 );
461         }
462 
463     }
464 
465     /**
466      * Weighted least squares test for 2D matrices
467      *
468      * @throws Exception
469      */
470     @Test
471     public void testMatrixWeightedRegress() throws Exception {
472         DoubleMatrix2D dat = new DenseDoubleMatrix2D( new double[][] { { 1, 2, 3, 4, 5 }, { 1, 1, 6, 3, 2 } } );
473         DoubleMatrix2D des = new DenseDoubleMatrix2D( new double[][] { { 1, 1, 1, 1, 1 }, { 1, 2, 2, 3, 3 },
474                 { 2, 1, 5, 3, 4 } } );
475 
476         DoubleMatrix2D w = dat.copy();
477         w.assign( dat );
478         Algebra solver = new Algebra();
479         des = solver.transpose( des );
480         LeastSquaresFit fit = new LeastSquaresFit( des, dat, w );
481 
482         /*
483          * TODO R code please
484          */
485 
486         // FIXME why is precision of these tests so low? It was 0.1! I changed it to 0.001
487 
488         // coefficients
489         DoubleMatrix2D actuals = solver.transpose( fit.getCoefficients() );
490         double[][] expected = new double[][] { { -1.7070, 1.7110, 0.3054 }, { 0.2092, -0.6642, 1.3640 } };
491         for ( int i = 0; i < expected.length; i++ ) {
492             assertArrayEquals( expected[i], actuals.viewRow( i ).toArray(), 0.001 );
493         }
494 
495         // fitted
496         actuals = fit.getFitted();
497         expected = new double[][] { { 0.6151, 2.0210, 3.2430, 4.3430, 4.6490 }, { 2.273, 0.245, 5.701, 2.309, 3.673 } };
498         for ( int i = 0; i < expected.length; i++ ) {
499             assertArrayEquals( expected[i], actuals.viewRow( i ).toArray(), 0.001 );
500         }
501 
502         // residuals
503         actuals = fit.getResiduals();
504         expected = new double[][] { { 0.38490, -0.02092, -0.24270, -0.34310, 0.35150 },
505                 { -1.2730, 0.7550, 0.2986, 0.6910, -1.6730 } };
506         for ( int i = 0; i < expected.length; i++ ) {
507             assertArrayEquals( expected[i], actuals.viewRow( i ).toArray(), 0.001 );
508         }
509 
510     }
511 
512     /**
513      * Has a lot of missing values.
514      *
515      * @throws Exception
516      */
517     @Test
518     public void testOneWayAnova() throws Exception {
519         DoubleMatrixReader f = new DoubleMatrixReader();
520         DoubleMatrix<String, String> testMatrix = f.read( this.getClass().getResourceAsStream(
521                 "/data/anova-test-data.txt" ) );
522 
523         ObjectMatrix<String, String, Object> design = new ObjectMatrixImpl<>( 8, 1 );
524         for ( int i = 0; i < 8; i++ ) {
525             design.set( i, 0, "A" + i % 3 );
526         }
527         design.addColumnName( "Factor1" );
528 
529         DesignMatrix d = new DesignMatrix( design, true );
530 
531         LeastSquaresFit fit = new LeastSquaresFit( d, testMatrix );
532         Map<String, LinearModelSummary> sums = fit.summarizeByKeys( true );
533         assertEquals( 100, sums.size() );
534 
535         for ( LinearModelSummary lms : sums.values() ) {
536             GenericAnovaResult a = lms.getAnova();
537             assertNotNull( a );
538             Double interactionEffectP = a.getInteractionEffectP();
539             assertNull( interactionEffectP );
540         }
541 
542         LinearModelSummary sum4 = sums.get( "probe_4" );
543         assertNotNull( sum4.getContrastCoefficients() );
544         assertEquals( 0.6531, sum4.getP(), 0.0001 );
545         assertEquals( 0.2735, sum4.getF(), 0.0001 );
546         assertEquals( 0.2735, sum4.getAnova().getMainEffectF( "Factor1" ), 0.0001 );
547         assertEquals( 2, sum4.getAnova().getResidualDf().intValue() );
548         assertEquals( 1, sum4.getAnova().getMainEffectDof( "Factor1" ).intValue() );
549         assertEquals( 0.6531, sum4.getMainEffectP( "Factor1" ), 0.0001 );
550 
551         LinearModelSummary sum21 = sums.get( "probe_21" );
552         assertNotNull( sum21.getContrastCoefficients() );
553         assertEquals( 0.6492, sum21.getP(), 0.0001 );
554         assertEquals( 0.4821, sum21.getF(), 0.0001 );
555         assertEquals( 0.4821, sum21.getAnova().getMainEffectF( "Factor1" ), 0.0001 );
556         assertEquals( 4, sum21.getAnova().getResidualDf().intValue() );
557         assertEquals( 2, sum21.getAnova().getMainEffectDof( "Factor1" ).intValue() );
558         assertEquals( 0.6492, sum21.getMainEffectP( "Factor1" ), 0.0001 );
559 
560         LinearModelSummary sum98 = sums.get( "probe_98" );
561         assertNotNull( sum98.getContrastCoefficients() );
562         assertEquals( 0.1604, sum98.getP(), 0.0001 );
563         assertEquals( 2.993, sum98.getF(), 0.0001 );
564         assertEquals( 4, sum98.getAnova().getResidualDf().intValue() );
565         assertEquals( 2, sum98.getAnova().getMainEffectDof( "Factor1" ).intValue() );
566         assertEquals( 2.9931, sum98.getAnova().getMainEffectF( "Factor1" ).doubleValue(), 0.0001 );
567         assertEquals( 0.1604, sum98.getMainEffectP( "Factor1" ), 1e-4 );
568 
569         LinearModelSummary sum10 = sums.get( "probe_10" );
570         assertNotNull( sum10.getContrastCoefficients() );
571         assertEquals( 0.8014, sum10.getP(), 0.0001 );
572         assertEquals( 0.2314, sum10.getF(), 0.0001 );
573         assertEquals( 5, sum10.getAnova().getResidualDf().intValue() );
574         assertEquals( 2, sum10.getAnova().getMainEffectDof( "Factor1" ).intValue() );
575         assertEquals( 0.8014, sum10.getMainEffectP( "Factor1" ), 1e-4 );
576 
577         /*
578          * Painful case follows. Not full rank due to missing values:
579          */
580         LinearModelSummary sum60 = sums.get( "probe_60" );
581         assertNotNull( sum60.getContrastCoefficients() );
582 
583         /*
584          * See lmtests.R
585          * 
586          * Note that using lmFit and lm give different results because (apparently) of the difference in strategy
587          * dealing
588          * with missing values. In lm, the factors are subset; in lmFit, the design matrix is subset. We do the latter.
589          *
590          * lmFit(dat, model.matrix(~ factor3))
591          * 
592          * vs
593          * 
594          * lm(t(dat["probe_60",]) ~ factor3)
595          */
596         assertEquals( 9.00145, sum60.getContrastCoefficients().get( 0, 0 ), 0.0001 ); // same as lmFit; R lm gives 8.9913; lm.fit gives tehse values.
597         assertEquals( -0.01020, sum60.getContrastCoefficients().get( 1, 0 ), 0.0001 ); // same as lmFit; R lm gives +0.0102
598         assertEquals( Double.NaN, sum60.getContrastCoefficients().get( 2, 0 ), 0.0001 ); // good ...
599 
600         /*
601          * This is the value of R-squared from lm(). lmFit doesn't give us this, but...
602          */
603         //   assertEquals( -0.4996, sum60.getAdjRSquared(), 1e-5 );
604 
605         // using results of lm()
606         // anova(object)
607         //        Analysis of Variance Table
608         //
609         //        Response: t(dat["probe_60", ])
610         //                  Df  Sum Sq  Mean Sq F value Pr(>F)
611         //        factor3    1 0.00010 0.000104   5e-04 0.9846 <- not quite
612         //        Residuals  2 0.44135 0.220675   <- we get this
613 
614         assertEquals( 2, sum60.getResidualDof().intValue() );
615         assertEquals( 1, sum60.getNumeratorDof().intValue() );
616 
617         assertEquals( 2, sum60.getAnova().getResidualDf().intValue() );
618         assertEquals( 1, sum60.getAnova().getMainEffectDof( "Factor1" ).intValue() );
619 
620         // The value lm gives is 0.004715; for limma, topTableF gives NA and no pvalue. 
621         // However, for this case, this is actually the t-statistic (two groups) and the right value is 0.022 (from lm)
622         assertEquals( 0.0004715, sum60.getF(), 1e-7 ); // on 1 and 2 dof,  p-value: 0.9846
623         assertEquals( 0.9846482, sum60.getP(), 1e-5 );
624 
625         //
626         assertEquals( 0.9846482, sum60.getMainEffectP( "Factor1" ), 1e-5 );
627 
628         // Result for topTable(eBayes(fit), coef=2)
629         //                logFC    AveExpr            t      P.Value   adj.P.Val          B
630         // probe_60  -0.01020000   8.996350  -0.02338077 9.831252e-01 0.983125229 -7.4711642
631 
632         // topTableF(eBayes(o2), number = 100)
633         //          X.Intercept.     factor3v factor3w_base    AveExpr            F      P.Value    adj.P.Val
634         // probe_60     9.001450  -0.01020000            NA   8.996350           NA           NA           NA
635 
636         // Using lm(formula = t(dat["probe_60", ]) ~ factor3)
637 
638         //        Call:
639         //            lm(formula = t(dat["probe_60", ]) ~ factor3)
640         //
641         //            Residuals:
642         //            X0b.bioassay.0b. X1a.bioassay.1a. X2a.bioassay.2a. X2b.bioassay.2b. 
643         //                     -0.1209          -0.4539           0.1209           0.4539 
644         //
645         //            Coefficients:
646         //                          Estimate Std. Error t value Pr(>|t|)   
647         //            (Intercept)     8.9913     0.3322  27.068  0.00136 **
648         //            factor3w_base   0.0102     0.4698   0.022  0.98465   
649         //            ---
650         //            Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
651         //
652         //            Residual standard error: 0.4698 on 2 degrees of freedom
653         //              (4 observations deleted due to missingness)
654         //            Multiple R-squared:  0.0002357, Adjusted R-squared:  -0.4996 
655         //            F-statistic: 0.0004715 on 1 and 2 DF,  p-value: 0.9846
656 
657         // results of using      lm.fit(X,y)
658         /// > X
659         //        (Intercept) factor3v factor3w_base
660         //        2           1        1             0
661         //        3           1        0             1
662         //        5           1        1             0
663         //        6           1        0             1
664         //        > y
665         //        [1] 8.8704 8.5475 9.1121 9.4554
666         //        > lm.fit(X,y)
667         //        $coefficients
668         //          (Intercept)      factor3v factor3w_base 
669         //              9.00145      -0.01020            NA 
670         //
671         //        $residuals
672         //        [1] -0.12085 -0.45395  0.12085  0.45395
673         //
674         //        $effects
675         //        (Intercept)    factor3v                         
676         //           -17.9927     -0.0102      0.0784      0.6597 
677         //
678         //        $rank
679         //        [1] 2
680         //
681         //        $fitted.values
682         //        [1] 8.99125 9.00145 8.99125 9.00145
683         //
684         //        $assign
685         //        NULL
686         //
687         //        $qr
688         //        $qr
689         //          (Intercept)   factor3v factor3w_base
690         //        2        -2.0 -1.0000000 -1.000000e+00
691         //        3         0.5  1.0000000 -1.000000e+00
692         //        5         0.5 -0.3333333 -1.110223e-16
693         //        6         0.5  0.6666667  0.000000e+00
694         //
695         //        $qraux
696         //        [1] 1.500000 1.666667 2.000000
697         //
698         //        $pivot
699         //        [1] 1 2 3
700         //
701         //        $tol
702         //        [1] 1e-07
703         //
704         //        $rank
705         //        [1] 2
706         //
707         //        attr(,"class")
708         //        [1] "qr"
709         //
710         //        $df.residual
711         //        [1] 2
712 
713     }
714 
715     /**
716      * @throws Exception
717      */
718     @Test
719     public void testSingular() throws Exception {
720         DoubleMatrixReader f = new DoubleMatrixReader();
721         DoubleMatrix<String, String> testMatrix = f
722                 .read( this.getClass().getResourceAsStream( "/data/lmtest2.dat.txt" ) );
723 
724         StringMatrixReader of = new StringMatrixReader();
725         StringMatrix<String, String> sampleInfo = of.read( this.getClass()
726                 .getResourceAsStream( "/data/lmtest2.des.txt" ) );
727         DesignMatrix d = new DesignMatrix( sampleInfo, true );
728 
729         assertEquals( 9, d.getMatrix().columns() );
730 
731         LeastSquaresFit fit = new LeastSquaresFit( d, testMatrix );
732 
733         Map<String, LinearModelSummary> sums = fit.summarizeByKeys( true );
734         assertEquals( 81, sums.size() );
735 
736         for ( LinearModelSummary lms : sums.values() ) {
737             GenericAnovaResult a = lms.getAnova();
738             assertNotNull( a );
739         }
740 
741         LinearModelSummary s = sums.get( "A01157cds_s_at" );
742 
743         assertNotNull( s.getContrastCoefficients() );
744 
745         assertEquals( 7.3740000, s.getContrastCoefficients().get( 0, 0 ), 0.001 );
746         // assertEquals( 0.1147667, s.getCoefficients().get( 1, 3 ), 0.001 );
747         assertEquals( 6, s.getResidualDof().intValue() );
748         assertEquals( 7, s.getNumeratorDof().intValue() );
749         assertEquals( 0.8634, s.getF(), 0.01 );
750         assertEquals( 0.5795, s.getP(), 0.001 );
751 
752     }
753 
754     /**
755      * Originally causes failures during summarization step. There are two pivoted columns.
756      *
757      * @throws Exception
758      */
759     @Test
760     public void testSingular2() throws Exception {
761         DoubleMatrixReader f = new DoubleMatrixReader();
762         DoubleMatrix<String, String> testMatrix = f.read( this.getClass().getResourceAsStream(
763                 "/data/1027_GSE6189.data.test.txt" ) );
764 
765         StringMatrixReader of = new StringMatrixReader();
766         StringMatrix<String, String> sampleInfo = of.read( this.getClass().getResourceAsStream(
767                 "/data/1027_GSE6189_expdesign.data.txt" ) );
768         DesignMatrix d = new DesignMatrix( sampleInfo, true );
769 
770         LeastSquaresFit fit = new LeastSquaresFit( d, testMatrix.getRowRange( 0, 0 ) );
771 
772         Map<String, LinearModelSummary> sums = fit.summarizeByKeys( true );
773         assertEquals( 1, sums.size() );
774         for ( LinearModelSummary lms : sums.values() ) {
775             GenericAnovaResult a = lms.getAnova();
776             assertNotNull( a );
777         }
778         LinearModelSummary s = sums.get( "1367452_at" );
779         assertNotNull( s );
780         assertNotNull( s.getContrastCoefficients() );
781 
782         // log.info( s.getCoefficients() );
783 
784         // log.info( s.getAnova() );
785 
786         // our model matrix ends up with different coefficients than R which are
787         // double[] rcoef = new double[] { 14.96355, 0.14421, -0.11525, 0.24257, Double.NaN, 0.04093, 0.06660,
788         // Double.NaN };
789 
790         // here are the coefs we get in R if we use the exact model matrix we get drom our DesignMatrix
791         double[] coef = new double[] { 15.10776244, -0.01689300, 0.09835841, -0.20163964, Double.NaN, -0.04092962,
792                 Double.NaN, 0.06660370 };
793 
794         for ( int i = 0; i < s.getContrastCoefficients().rows(); i++ ) {
795             assertEquals( coef[i], s.getContrastCoefficients().get( i, 0 ), 0.0001 );
796         }
797 
798     }
799 
800     @Test
801     public void testThreeWaySingular() throws Exception {
802         DoubleMatrixReader f = new DoubleMatrixReader();
803         DoubleMatrix<String, String> testMatrix = f.read( this.getClass().getResourceAsStream(
804                 "/data/1064_GSE7863.data.test.txt" ) );
805 
806         StringMatrixReader of = new StringMatrixReader();
807         StringMatrix<String, String> sampleInfo = of.read( this.getClass().getResourceAsStream(
808                 "/data/1064_GSE7863_expdesign.data.test.txt" ) );
809         DesignMatrix d = new DesignMatrix( sampleInfo, true );
810 
811         assertEquals( 5, d.getMatrix().columns() );
812 
813         LeastSquaresFit fit = new LeastSquaresFit( d, testMatrix );
814 
815         Map<String, LinearModelSummary> sums = fit.summarizeByKeys( true );
816         assertEquals( 416, sums.size() );
817 
818         for ( LinearModelSummary lms : sums.values() ) {
819             GenericAnovaResult a = lms.getAnova();
820             assertNotNull( a );
821         }
822 
823         LinearModelSummary s = sums.get( "1415696_at" );
824 
825         assertNotNull( s.getContrastCoefficients() );
826         assertEquals( 0.000794, s.getContrastCoefficients().get( 2, 3 ), 0.001 );
827         assertEquals( 11, s.getResidualDof().intValue() );
828         assertEquals( 4, s.getNumeratorDof().intValue() );
829         assertEquals( 24.38, s.getF(), 0.01 );
830         assertEquals( 2.025e-05, s.getP(), 0.001 );
831         GenericAnovaResult anova = s.getAnova();
832         assertEquals( 29.0386, anova.getMainEffectF( "Treatment" ), 0.0001 );
833 
834         s = sums.get( "1415837_at" );
835         assertNotNull( s.getContrastCoefficients() );
836         assertEquals( 11, s.getResidualDof().intValue() );
837         assertEquals( 4, s.getNumeratorDof().intValue() );
838         assertEquals( 22.72, s.getF(), 0.01 );
839         assertEquals( 2.847e-05, s.getP(), 0.001 );
840         anova = s.getAnova();
841         assertEquals( 6.5977, anova.getMainEffectF( "Treatment" ), 0.0001 );
842 
843         s = sums.get( "1416179_a_at" );
844         assertNotNull( s.getContrastCoefficients() );
845         assertEquals( 11, s.getResidualDof().intValue() );
846         assertEquals( 4, s.getNumeratorDof().intValue() );
847         assertEquals( 25.14, s.getF(), 0.01 );
848         assertEquals( 1.743e-05, s.getP(), 0.001 );
849         anova = s.getAnova();
850         assertEquals( 38.411, anova.getMainEffectF( "Treatment" ), 0.001 );
851 
852         s = sums.get( "1456759_at" );
853         assertNotNull( s.getContrastCoefficients() );
854         assertEquals( 11, s.getResidualDof().intValue() );
855         assertEquals( 4, s.getNumeratorDof().intValue() );
856         assertEquals( 7.903, s.getF(), 0.01 );
857         assertEquals( 0.002960, s.getP(), 0.001 );
858         anova = s.getAnova();
859         assertEquals( 10.3792, anova.getMainEffectF( "Treatment" ), 0.001 );
860         assertEquals( 2.6253, anova.getMainEffectF( "Genotype" ), 0.001 );
861     }
862 
863     /**
864      * Sanity check.
865      *
866      * @throws Exception
867      */
868     @Test
869     public void testTwoWayAnovaUnfittable() throws Exception {
870         DoubleMatrixReader f = new DoubleMatrixReader();
871         DoubleMatrix<String, String> testMatrix = f.read( this.getClass()
872                 .getResourceAsStream( "/data/lmtest10.dat.txt" ) );
873 
874         StringMatrixReader of = new StringMatrixReader();
875         StringMatrix<String, String> sampleInfo = of.read( this.getClass().getResourceAsStream(
876                 "/data/lmtest10.des.txt" ) );
877 
878         DesignMatrix d = new DesignMatrix( sampleInfo, true );
879 
880         LeastSquaresFit fit = new LeastSquaresFit( d, testMatrix );
881         Map<String, LinearModelSummary> sums = fit.summarizeByKeys( true );
882         assertEquals( 1, sums.size() );
883 
884         for ( LinearModelSummary lms : sums.values() ) {
885             GenericAnovaResult a = lms.getAnova();
886             assertNotNull( a );
887             assertEquals( Double.NaN, a.getMainEffectP( "CellType" ), 0.0001 );
888             assertEquals( Double.NaN, a.getMainEffectP( "SamplingTimePoint" ), 0.0001 );
889         }
890 
891         DoubleMatrix2D coefficients = fit.getCoefficients();
892         DoubleMatrix2D residuals = fit.getResiduals();
893 
894         assertEquals( 2.238, coefficients.get( 0, 0 ), 0.0001 ); // mean.
895         assertEquals( 0.0, coefficients.get( 1, 0 ), 0.0001 );
896 
897         for ( int i = 0; i < residuals.rows(); i++ ) {
898             assertEquals( 0.0, residuals.get( 0, i ), 0.00001 );
899         }
900     }
901 
902     /**
903      * Check for problem reported by TF -- Gemma gives slightly different result. Problem is not at this level.
904      *
905      * @throws Exception
906      */
907     @Test
908     public void testTwoWayAnovaWithInteractions() throws Exception {
909         DoubleMatrixReader f = new DoubleMatrixReader();
910         DoubleMatrix<String, String> testMatrix = f.read( this.getClass().getResourceAsStream(
911                 "/data/GSE8441_expmat_8probes.txt" ) );
912 
913         StringMatrixReader of = new StringMatrixReader();
914         StringMatrix<String, String> sampleInfo = of.read( this.getClass().getResourceAsStream(
915                 "/data/606_GSE8441_expdesign.data.txt" ) );
916         DesignMatrix d = new DesignMatrix( sampleInfo, true );
917         d.addInteraction();
918 
919         assertEquals( 4, d.getMatrix().columns() );
920 
921         assertEquals( 22, testMatrix.columns() );
922 
923         LeastSquaresFit fit = new LeastSquaresFit( d, testMatrix );
924 
925         Map<String, LinearModelSummary> sums = fit.summarizeByKeys( true );
926         assertEquals( 8, sums.size() );
927 
928         for ( LinearModelSummary lms : sums.values() ) {
929             GenericAnovaResult a = lms.getAnova();
930             assertNotNull( a );
931         }
932 
933         LinearModelSummary s = sums.get( "217757_at" );
934         GenericAnovaResult anova = s.getAnova();
935 
936         assertNotNull( s.getContrastCoefficients() );
937         assertEquals( 0.763, s.getContrastCoefficients().get( 2, 3 ), 0.001 );
938         assertEquals( 18, s.getResidualDof().intValue() );
939         assertEquals( 3, s.getNumeratorDof().intValue() );
940         assertEquals( 0.299, s.getF(), 0.01 );
941         assertEquals( 0.8257, s.getP(), 0.001 );
942 
943         assertEquals( 0.5876, anova.getMainEffectF( "Treatment" ), 0.0001 );
944         assertEquals( 0.5925, anova.getInteractionEffectP(), 0.001 );
945 
946         s = sums.get( "202851_at" );
947         anova = s.getAnova();
948         assertNotNull( s.getContrastCoefficients() );
949         assertEquals( 0.787, s.getContrastCoefficients().get( 2, 3 ), 0.001 );
950         assertEquals( 18, s.getResidualDof().intValue() );
951         assertEquals( 3, s.getNumeratorDof().intValue() );
952         assertEquals( 0.1773, s.getF(), 0.01 );
953         assertEquals( 0.9104, s.getP(), 0.001 );
954 
955         assertEquals( 0.3777, anova.getMainEffectF( "Treatment" ), 0.0001 );
956         assertEquals( 0.9956, anova.getInteractionEffectP(), 0.001 );
957     }
958 
959     /**
960      * No missing values; Two-way ANOVA with interaction, PLUS a continuous covariate.
961      *
962      * @throws Exception
963      */
964     @Test
965     public void testTwoWayTwoLevelsOneContinousInteractionC() throws Exception {
966         DoubleMatrixReader f = new DoubleMatrixReader();
967         DoubleMatrix<String, String> testMatrix = f.read( this.getClass().getResourceAsStream(
968                 "/data/example.madata.small.txt" ) );
969 
970         ObjectMatrix<String, String, Object> design = new ObjectMatrixImpl<>( 9, 3 );
971 
972         design.set( 0, 0, "A" );
973         design.set( 1, 0, "A" );
974         design.set( 2, 0, "A" );
975         design.set( 3, 0, "A" );
976         design.set( 4, 0, "B" );
977         design.set( 5, 0, "B" );
978         design.set( 6, 0, "B" );
979         design.set( 7, 0, "B" );
980         design.set( 8, 0, "B" );
981         design.set( 0, 1, 0.12 );
982         design.set( 1, 1, 0.24 );
983         design.set( 2, 1, 0.48 );
984         design.set( 3, 1, 0.96 );
985         design.set( 4, 1, 0.12 );
986         design.set( 5, 1, 0.24 );
987         design.set( 6, 1, 0.48 );
988         design.set( 7, 1, 0.96 );
989         design.set( 8, 1, 0.96 );
990         design.set( 0, 2, "C" );
991         design.set( 1, 2, "C" );
992         design.set( 2, 2, "D" );
993         design.set( 3, 2, "D" );
994         design.set( 4, 2, "C" );
995         design.set( 5, 2, "C" );
996         design.set( 6, 2, "D" );
997         design.set( 7, 2, "D" );
998         design.set( 8, 2, "D" );
999         design.addColumnName( "Treat" );
1000         design.addColumnName( "Value" );
1001         design.addColumnName( "Geno" );
1002 
1003         DesignMatrix designMatrix = new DesignMatrix( design, true );
1004         designMatrix.addInteraction( "Treat", "Geno" );
1005         LeastSquaresFit fit = new LeastSquaresFit( designMatrix, testMatrix );
1006 
1007         Map<String, LinearModelSummary> sums = fit.summarizeByKeys( true );
1008 
1009         LinearModelSummary s = sums.get( "1553129_at" );
1010         assertEquals( 1.791, s.getF(), 0.01 );
1011         assertEquals( 0.2930, s.getP(), 0.001 );
1012         assertEquals( 3.71542, s.getContrastCoefficients().get( 0, 0 ), 0.001 );
1013         assertEquals( 0.184, s.getContrastCoefficients().get( 1, 3 ), 0.001 ); // this ordering might change?
1014         assertEquals( 0.137, s.getContrastCoefficients().get( 4, 3 ), 0.001 ); // this ordering might change?
1015         GenericAnovaResult a = s.getAnova();
1016         assertEquals( 0.137, a.getInteractionEffectP(), 0.001 );
1017 
1018         s = sums.get( "232018_at" );
1019         assertEquals( 0.7167, s.getF(), 0.01 );
1020         assertEquals( 0.6235, s.getP(), 0.001 );
1021         assertEquals( 6.8873, s.getContrastCoefficients().get( 0, 0 ), 0.001 );
1022         assertEquals( 0.587932, s.getContrastCoefficients().get( 1, 3 ), 0.001 );
1023         a = s.getAnova();
1024         assertEquals( 0.2904, a.getInteractionEffectP(), 0.001 );
1025 
1026         for ( LinearModelSummary lms : sums.values() ) {
1027             GenericAnovaResult anova = lms.getAnova();
1028             assertNotNull( anova );
1029             Double interactionEffectP = anova.getInteractionEffectP();
1030             assertNotNull( interactionEffectP );
1031             assertTrue( !Double.isNaN( interactionEffectP ) );
1032 
1033         }
1034 
1035     }
1036 
1037     @Test
1038     public void testVectorRegress() {
1039 
1040         DoubleMatrix1D vectorA = new DenseDoubleMatrix1D( new double[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 } );
1041         DoubleMatrix1D vectorB = new DenseDoubleMatrix1D( new double[] { 1, 2, 2, 3, 3, 4, 4, 5, 5, 6 } );
1042 
1043         LeastSquaresFit fit = new LeastSquaresFit( vectorA, vectorB );
1044 
1045         DoubleMatrix2D coefficients = fit.getCoefficients();
1046         DoubleMatrix2D residuals = fit.getResiduals();
1047 
1048         assertEquals( 0.666666, coefficients.get( 0, 0 ), 0.0001 );
1049         assertEquals( 0.5152, coefficients.get( 1, 0 ), 0.0001 );
1050 
1051         double[] expectedResiduals = new double[] { -0.1818182, 0.3030303, -0.2121212, 0.2727273, -0.2424242,
1052                 0.2424242, -0.2727273, 0.2121212, -0.3030303, 0.1818182 };
1053 
1054         for ( int i = 0; i < expectedResiduals.length; i++ ) {
1055             assertEquals( expectedResiduals[i], residuals.get( 0, i ), 0.00001 );
1056         }
1057 
1058     }
1059 
1060     /**
1061      * @throws Exception
1062      */
1063     @Test
1064     public void testVectorWeightedRegress() throws Exception {
1065         // a<-c( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 )
1066         //  b<-c(1, 2, 2, 3, 3, 4, 4, 5, 5, 6)
1067         //  w<-1/a
1068         DoubleMatrix1D vectorA = new DenseDoubleMatrix1D( new double[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 } );
1069         DoubleMatrix1D vectorB = new DenseDoubleMatrix1D( new double[] { 1, 2, 2, 3, 3, 4, 4, 5, 5, 6 } );
1070         DoubleMatrix1D w = vectorA.copy().assign( Functions.inv );
1071 
1072         LeastSquaresFit fit = new LeastSquaresFit( vectorA, vectorB, w );
1073 
1074         DoubleMatrix2D coefficients = fit.getCoefficients();
1075         DoubleMatrix2D residuals = fit.getResiduals();
1076         //lm(b~a, weights=w)
1077         //lm.wfit(model.matrix(~a, factor(a)), b, w)
1078         assertEquals( 0.60469, coefficients.get( 0, 0 ), 0.0001 );
1079         assertEquals( 0.52642, coefficients.get( 1, 0 ), 0.0001 );
1080 
1081         double[] expectedResiduals = new double[] { -0.1311097, 0.3424702, -0.1839499, 0.2896301, -0.2367900,
1082                 0.2367900, -0.2896301, 0.1839499, -0.3424702, 0.1311097 };
1083 
1084         for ( int i = 0; i < expectedResiduals.length; i++ ) {
1085             assertEquals( expectedResiduals[i], residuals.get( 0, i ), 0.00001 );
1086         }
1087 
1088         double[] expectedFitted = new double[] { 1.13111, 1.65753, 2.18395, 2.71037, 3.23679, 3.76321, 4.28963,
1089                 4.81605, 5.34247, 5.86889 };
1090 
1091         for ( int i = 0; i < expectedFitted.length; i++ ) {
1092             assertEquals( expectedFitted[i], fit.getFitted().get( 0, i ), 0.00001 );
1093         }
1094     }
1095 
1096     /**
1097      * @throws Exception
1098      */
1099     @Test
1100     public void testVectorWeightedRegressWithMissing() throws Exception {
1101 
1102         DoubleMatrixReader f = new DoubleMatrixReader();
1103         DoubleMatrix<String, String> testMatrix = f.read( this.getClass().getResourceAsStream(
1104                 "/data/example.madata.withmissing.small.txt" ) );
1105         DoubleMatrix1D libSize = MatrixStats.colSums( testMatrix );
1106         testMatrix = MatrixStats.convertToLog2Cpm( testMatrix, libSize );
1107 
1108         StringMatrixReader of = new StringMatrixReader();
1109         StringMatrix<String, String> sampleInfo = of.read( this.getClass().getResourceAsStream(
1110                 "/data/example.metadata.small.txt" ) );
1111         DesignMatrix designMatrix = new DesignMatrix( sampleInfo );
1112         DoubleMatrix2D weights = new DenseDoubleMatrix2D( testMatrix.asArray() );
1113         weights.assign( Functions.inv );
1114 
1115         LeastSquaresFit fit = new LeastSquaresFit( designMatrix, testMatrix, weights );
1116         assertTrue( fit.isHasMissing() );
1117 
1118         DoubleMatrix2D coefficients = fit.getCoefficients();
1119         DoubleMatrix2D residuals = fit.getResiduals();
1120 
1121         assertEquals( 15.339801, coefficients.get( 0, 0 ), 0.0001 );
1122         assertEquals( -0.024058, coefficients.get( 1, 1 ), 0.0001 );
1123         assertEquals( -0.059586, coefficients.get( 2, 18 ), 0.0001 );
1124 
1125         assertEquals( -0.073732, residuals.get( 0, 0 ), 0.0001 );
1126         assertEquals( -0.064656, residuals.get( 1, 1 ), 0.0001 );
1127         assertEquals( -0.085214, residuals.get( 18, 8 ), 0.0001 );
1128         assertTrue( Double.isNaN( residuals.get( 4, 2 ) ) );
1129 
1130     }
1131 
1132     /**
1133      * Tests limma-like functionality
1134      * 
1135      * Multiple levels per factor, unbalanced design
1136      * 
1137      * @throws Exception
1138      */
1139     @Test
1140     public void testNHBE() throws Exception {
1141         DoubleMatrixReader f = new DoubleMatrixReader();
1142         DoubleMatrix<String, String> testMatrix = f.read( new GZIPInputStream( this.getClass().getResourceAsStream(
1143                 "/data/NHBE_transcriptome_data.txt.gz" ) ) );
1144 
1145         StringMatrixReader of = new StringMatrixReader();
1146         StringMatrix<String, String> sampleInfo = of.read( this.getClass().getResourceAsStream(
1147                 "/data/NHBE_design.txt" ) );
1148 
1149         DesignMatrix designMatrix = new DesignMatrix( sampleInfo );
1150         designMatrix.addInteraction();
1151         designMatrix.setBaseline( "time", "1_h" );
1152         designMatrix.setBaseline( "Treatment", "control" );
1153 
1154         LeastSquaresFit fit = new LeastSquaresFit( designMatrix, testMatrix );
1155 
1156         //  System.err.println( designMatrix );
1157         //   List<LinearModelSummary> sums = fit.summarize( true );
1158 
1159         ModeratedTstat.ebayes( fit );
1160 
1161         /////////////
1162         //  System.err.println( "------- After ebayes ------" );
1163         List<LinearModelSummary> sums = fit.summarize( true );
1164 
1165         // fit3$sigma[1]
1166         assertEquals( 0.34927, sums.get( 0 ).getSigma(), 0.0001 );
1167         assertEquals( 1.3859, sums.get( 0 ).getPriorDof(), 0.01 );
1168 
1169         /*
1170          * TODO: add more tests here.
1171          */
1172     }
1173 
1174     /**
1175      * Tests limma-like functionality. Balanced 2x2 design
1176      * 
1177      * @throws Exception
1178      */
1179     @Test
1180     public void testEstrogen() throws Exception {
1181         DoubleMatrixReader f = new DoubleMatrixReader();
1182         DoubleMatrix<String, String> testMatrix = f.read( new GZIPInputStream( this.getClass().getResourceAsStream(
1183                 "/data/estrogen.data.txt.gz" ) ) );
1184 
1185         StringMatrixReader of = new StringMatrixReader();
1186         StringMatrix<String, String> sampleInfo = of.read( this.getClass().getResourceAsStream(
1187                 "/data/estrogen.meta.txt" ) );
1188 
1189         DesignMatrix designMatrix = new DesignMatrix( sampleInfo );
1190         designMatrix.addInteraction();
1191         LeastSquaresFit fit = new LeastSquaresFit( designMatrix, testMatrix );
1192 
1193         //  System.err.println( designMatrix );
1194         List<LinearModelSummary> sums = fit.summarize( true );
1195         //  System.err.println( fit.getCoefficients().viewColumn( 0 ) );
1196 
1197         LinearModelSummary s = sums.get( 0 );
1198         assertEquals( 3.8976, s.getF(), 0.01 );
1199         assertEquals( 0.11092, s.getP(), 0.001 );
1200         assertEquals( 9.69220, s.getContrastCoefficients().get( 0, 0 ), 0.001 );
1201         assertEquals( -1.4517, s.getContrastCoefficients().get( 1, 2 ), 0.001 ); // tstat
1202         assertEquals( 0.220, s.getContrastCoefficients().get( 1, 3 ), 0.001 ); // pvalue
1203         assertEquals( 4, s.getResidualDof().intValue() );
1204         GenericAnovaResult a = s.getAnova();
1205         assertEquals( 0.24143, a.getMainEffectF( "time" ), 0.0001 );
1206         assertEquals( 1, a.getMainEffectDof( "time" ).intValue() );
1207         assertEquals( 4, a.getResidualDf().intValue() );
1208         assertEquals( 2.43873, a.getInteractionEffectF(), 0.001 );
1209         assertEquals( 0.19340, a.getInteractionEffectP(), 0.001 );
1210 
1211         /////////////
1212         ModeratedTstat.ebayes( fit );
1213         sums = fit.summarize( true );
1214         LinearModelSummary x = sums.get( 0 );
1215 
1216         assertEquals( 0.0765, x.getSigma(), 0.0001 );
1217         assertEquals( 4.48, x.getPriorDof(), 0.01 ); // we get 4.479999 or something.
1218 
1219         assertEquals( 3.8976, x.getF(), 0.01 );
1220         assertEquals( 0.11092, x.getP(), 0.001 );
1221         // topTable(fit3, coef=2,n=dim(fit3)[1], sort.by="none" )["100_g_at",]
1222         assertEquals( 9.692196, x.getContrastCoefficients().get( 0, 0 ), 0.0001 );
1223         assertEquals( -0.92608, x.getContrastCoefficients().get( 1, 2 ), 0.001 ); // tstat
1224         assertEquals( 0.38, x.getContrastCoefficients().get( 1, 3 ), 0.001 ); // pvalue
1225         assertEquals( 4, x.getResidualDof().intValue() );
1226         // topTable(fit3, coef=4,n=dim(fit3)[1], sort.by="none" )["100_g_at",]
1227         assertEquals( 0.34671, x.getContrastCoefficients().get( 3, 3 ), 0.0001 ); // interaction pvalue
1228 
1229         GenericAnovaResult ax = x.getAnova();
1230         // classifyTestsF(fit3$t[,c(2)], df=fit3$df.residual, cor.matrix=cov2cor(fit3$cov.coefficients[2,2]), fstat.only = T)[1]
1231         assertEquals( 0.098252, ax.getMainEffectF( "time" ), 0.0001 );
1232         assertEquals( 1, ax.getMainEffectDof( "time" ).intValue() );
1233         assertEquals( 8.48, ax.getResidualDf(), 0.001 );
1234 
1235         assertEquals( 3.6678, ax.getMainEffectF( "dose" ), 0.0001 );
1236         assertEquals( 1, ax.getMainEffectDof( "dose" ).intValue() );
1237         assertEquals( 8.48, ax.getResidualDf(), 0.001 ); // 4 + 4.48
1238 
1239         // sum(f4^2)/1/sqig^2
1240         // pf(0.99247, 1, 8.48, lower.tail=F) 
1241         assertEquals( 0.99247, ax.getInteractionEffectF(), 0.0001 );
1242         assertEquals( 0.34671, ax.getInteractionEffectP(), 0.0001 );
1243 
1244     }
1245 }