public abstract class AbstractRClientTest extends Object
Modifier and Type | Field and Description |
---|---|
protected static org.slf4j.Logger |
log |
Constructor and Description |
---|
AbstractRClientTest() |
Modifier and Type | Method and Description |
---|---|
void |
testAnovaA() |
void |
testAnovaB() |
void |
testAnovaC() |
void |
testAnovaD() |
void |
testAnovaE() |
void |
testAnovaF()
One way @
|
void |
testAssignAndRetrieveMatrix() |
void |
testAssignAndRetrieveMatrixB() |
void |
testAssignAndRetrieveMatrixC() |
void |
testAssignAndRetrieveMatrixD() |
void |
testAssignStringList() |
void |
testDataFrameA() |
void |
testDoubleArrayTwoDoubleArrayEval() |
void |
testDoubleTwoDoubleArrayEval() |
void |
testExec() |
void |
testExecDoubleArray() |
void |
testExecError() |
void |
testFactorAssign() |
void |
testFindExecutable() |
void |
testLimmaA()
Also exercises dataFrameEval
library(limma)
dat<-read.table("data/testdata.txt", header=T, row.names=1)
f1<-factor(c("A", "A", "A", "A", "A", "A", "B", "B", "B", "B", "B", "B"));
f2<-factor(c("X", "X", "Y", "Y", "Z", "Z", "X", "X", "Y", "Y", "Z", "Z"));
cov1<-c( -0.230 , 1.400, -0.210, 0.570, -0.064, 0.980 ,-0.082, -0.094, 0.630, -2.000, 0.640, -0.870);
mo<-model.matrix(˜ f1 + f2 + cov1 - 1);
contr<-makeContrasts(A-B, levels=mo);
fit<-lmFit(dat, mo);
fit<-contrasts.fit(fit, contr);
fit<-eBayes(fit)
res<-topTable(fit)
|
void |
testLinearModelA()
Like a two-sample t-test where the intercept is also of interest
|
void |
testLinearModelB()
With a continuous covariate as well a categorical one
|
void |
testLinearModelC() |
void |
testLinearModelD()
Basically a one-way anova with 4 levels in the factor
|
void |
testListEvalA() |
void |
testListEvalB() |
void |
testLoadLibrary() |
void |
testLoadScript() |
void |
testStringListEval() |
void |
testStringListEvalB() |
void |
testTTest() |
void |
testTTestFail() |
public void testAnovaA()
public void testAnovaB()
public void testAnovaC()
public void testAnovaD()
public void testAnovaE()
public void testAnovaF()
public void testAssignAndRetrieveMatrix()
public void testAssignAndRetrieveMatrixB()
public void testAssignAndRetrieveMatrixC()
public void testAssignAndRetrieveMatrixD()
public void testAssignStringList()
public void testDataFrameA()
public void testDoubleArrayTwoDoubleArrayEval()
public void testDoubleTwoDoubleArrayEval()
public void testExec()
public void testExecDoubleArray()
public void testExecError()
public void testFactorAssign()
public void testLimmaA() throws Exception
library(limma) dat<-read.table("data/testdata.txt", header=T, row.names=1) f1<-factor(c("A", "A", "A", "A", "A", "A", "B", "B", "B", "B", "B", "B")); f2<-factor(c("X", "X", "Y", "Y", "Z", "Z", "X", "X", "Y", "Y", "Z", "Z")); cov1<-c( -0.230 , 1.400, -0.210, 0.570, -0.064, 0.980 ,-0.082, -0.094, 0.630, -2.000, 0.640, -0.870); mo<-model.matrix(˜ f1 + f2 + cov1 - 1); contr<-makeContrasts(A-B, levels=mo); fit<-lmFit(dat, mo); fit<-contrasts.fit(fit, contr); fit<-eBayes(fit) res<-topTable(fit)
Exception
public void testLinearModelA()
public void testLinearModelB()
public void testLinearModelC()
public void testLinearModelD()
public void testLoadLibrary()
public void testStringListEval()
public void testStringListEvalB()
public void testTTest()
public void testTTestFail()
Copyright © 2003–2022 UBC Michael Smith Laboratories. All rights reserved.