public abstract class AbstractRClient extends Object implements RClient
| Modifier and Type | Field and Description |
|---|---|
protected static org.slf4j.Logger |
log |
| Constructor and Description |
|---|
AbstractRClient() |
| Modifier and Type | Method and Description |
|---|---|
String |
assignFactor(List<String> strings) |
String |
assignFactor(String factorName,
List<String> list) |
String |
assignMatrix(double[][] matrix)
Assign a 2-d matrix.
|
String |
assignMatrix(DoubleMatrix<?,?> matrix)
Assign a 2-d matrix.
|
String |
assignMatrix(DoubleMatrix<?,?> matrix,
org.apache.commons.collections4.Transformer rowNameExtractor)
Assign a 2-d matrix.
|
String |
assignStringList(List<?> strings)
Define a variable corresponding to a character array in the R context, given a List of Strings.
|
boolean |
booleanDoubleArrayEval(String command,
String argName,
double[] arg)
Run a command that takes a double array as an argument and returns a boolean.
|
String |
dataFrame(ObjectMatrix<String,String,Object> matrix)
Convert an object matrix into an R data frame.
|
ObjectMatrix<String,String,Object> |
dataFrameEval(String command)
Evaluate a command that returns a dataFrame
|
abstract void |
disconnect() |
double[] |
doubleArrayDoubleArrayEval(String command,
String argName,
double[] arg)
Run a command that has a single double array parameter, and returns a double array.
|
double[] |
doubleArrayEval(String command)
Run a command that returns a double array with no arguments.
|
double[] |
doubleArrayTwoDoubleArrayEval(String command,
String argName,
double[] arg,
String argName2,
double[] arg2)
Run a command that takes two double array arguments and returns a double array.
|
double |
doubleTwoDoubleArrayEval(String command,
String argName,
double[] arg,
String argName2,
double[] arg2)
Run a command that takes two double arrays as arguments and returns a double value.
|
int[] |
intArrayEval(String command) |
LinearModelSummary |
linearModel(double[] data,
Map<String,List<?>> factors)
Lower level access to linear model.
|
LinearModelSummary |
linearModel(double[] data,
ObjectMatrix<String,String,Object> d) |
List<?> |
listEval(Class<?> listEntryType,
String command)
FIXME only partly implemented, possibly not going to stay.
|
boolean |
loadLibrary(String libraryName) |
protected void |
loadScript(InputStream is)
There is a pretty annoying limitation of this.
|
OneWayAnovaResult |
oneWayAnova(double[] data,
List<String> factor)
Lower-level access to a simple one-way ANOVA
|
Map<String,OneWayAnovaResult> |
oneWayAnovaEval(String command) |
void |
remove(String variableName)
Remove a variable from the R namespace
|
Map<String,LinearModelSummary> |
rowApplyLinearModel(String dataMatrixVarName,
String modelFormula,
String[] factorNames)
Run lm with anova on all the rows of a matrix
|
String |
stringEval(String command)
Evaluate any command and return a string
|
List<String> |
stringListEval(String command) |
TwoWayAnovaResult |
twoWayAnova(double[] data,
List<String> factor1,
List<String> factor2,
boolean includeInteraction)
Lower-level access to two-way ANOVA
|
Map<String,TwoWayAnovaResult> |
twoWayAnovaEval(String command,
boolean withInteractions)
Evaluates two way anova commands of the form
apply(matrix,1,function(x){anova(aov(x~farea+ftreat))}
and
apply(matrix,1,function(x){anova(aov(x~farea+ftreat+farea*ftreat))}
where farea and ftreat have already been transposed and had factor called on them.
|
static String |
variableIdentityNumber(Object ob) |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitassign, assign, assign, assign, eval, getLastError, isConnected, retrieveMatrix, voidEvalpublic static String variableIdentityNumber(Object ob)
ob - public String assignFactor(List<String> strings)
assignFactor in interface RClientpublic String assignFactor(String factorName, List<String> list)
assignFactor in interface RClientpublic String assignMatrix(double[][] matrix)
RClientassignMatrix in interface RClientpublic String assignMatrix(DoubleMatrix<?,?> matrix)
RClientassignMatrix in interface RClientpublic String assignMatrix(DoubleMatrix<?,?> matrix, org.apache.commons.collections4.Transformer rowNameExtractor)
RClientassignMatrix in interface RClientpublic String assignStringList(List<?> strings)
RClientassignStringList in interface RClientpublic boolean booleanDoubleArrayEval(String command, String argName, double[] arg)
RClientbooleanDoubleArrayEval in interface RClientpublic String dataFrame(ObjectMatrix<String,String,Object> matrix)
RClientpublic ObjectMatrix<String,String,Object> dataFrameEval(String command)
RClientdataFrameEval in interface RClientpublic abstract void disconnect()
public double[] doubleArrayDoubleArrayEval(String command, String argName, double[] arg)
RClientdoubleArrayDoubleArrayEval in interface RClientpublic double[] doubleArrayEval(String command)
RClientdoubleArrayEval in interface RClientpublic double[] doubleArrayTwoDoubleArrayEval(String command, String argName, double[] arg, String argName2, double[] arg2)
RClientdoubleArrayTwoDoubleArrayEval in interface RClientpublic double doubleTwoDoubleArrayEval(String command, String argName, double[] arg, String argName2, double[] arg2)
RClientdoubleTwoDoubleArrayEval in interface RClientpublic int[] intArrayEval(String command)
intArrayEval in interface RClientpublic LinearModelSummary linearModel(double[] data, Map<String,List<?>> factors)
RClientlinearModel in interface RClientfactors - Map of factorNames to factors (which can be expressed as Strings or Doubles). If you care about
the order the factors are introduced into the model, use a LinkedHashMap.public LinearModelSummary linearModel(double[] data, ObjectMatrix<String,String,Object> d)
linearModel in interface RClientd - which will be converted to factors or continuous covariates depending on whether the columns are
booleans, strings or numerical. Names of factors are the column names of the design matrix, and the rows
are assumed to be in the same order as the data.public List<?> listEval(Class<?> listEntryType, String command)
public boolean loadLibrary(String libraryName)
loadLibrary in interface RClientpublic OneWayAnovaResult oneWayAnova(double[] data, List<String> factor)
RClientoneWayAnova in interface RClientpublic Map<String,OneWayAnovaResult> oneWayAnovaEval(String command)
oneWayAnovaEval in interface RClientpublic void remove(String variableName)
RClientpublic Map<String,LinearModelSummary> rowApplyLinearModel(String dataMatrixVarName, String modelFormula, String[] factorNames)
RClientrowApplyLinearModel in interface RClientdataMatrixVarName - from an assignment of a matrixmodelFormula - and other options that will be passed as the argument to 'lm(...)', that refers to factor
variables that have already been assigned, using x as the outcome. Example might be x ~ f1 + f2.public String stringEval(String command)
RClientstringEval in interface RClientpublic List<String> stringListEval(String command)
stringListEval in interface RClientpublic TwoWayAnovaResult twoWayAnova(double[] data, List<String> factor1, List<String> factor2, boolean includeInteraction)
RClienttwoWayAnova in interface RClientpublic Map<String,TwoWayAnovaResult> twoWayAnovaEval(String command, boolean withInteractions)
RClientapply(matrix,1,function(x){anova(aov(x~farea+ftreat))}
andapply(matrix,1,function(x){anova(aov(x~farea+ftreat+farea*ftreat))}
where farea and ftreat have already been transposed and had factor called on them.twoWayAnovaEval in interface RClientprotected void loadScript(InputStream is)
is - Copyright © 2003–2023 UBC Michael Smith Laboratories. All rights reserved.