Interface SVDServiceHelper
-
- All Known Implementing Classes:
SVDServiceHelperImpl
public interface SVDServiceHelperPerforms Singular value decomposition on experiment data to get eigengenes, and does comparison of those PCs to factors recorded in the experimental design.- Author:
- paul
-
-
Method Summary
All Methods Instance Methods Abstract Methods Modifier and Type Method Description Set<ExperimentalFactor>getImportantFactors(ExpressionExperiment ee, Collection<ExperimentalFactor> experimentalFactors, Double importanceThreshold)Map<ProbeLoading,DoubleVectorValueObject>getTopLoadedVectors(ExpressionExperiment ee, int component, int count)booleanhasPca(ExpressionExperiment ee)SVDValueObjectretrieveSvd(ExpressionExperiment ee)SVDValueObjectsvd(ExpressionExperiment ee)SVDValueObjectsvdFactorAnalysis(PrincipalComponentAnalysis pca)Compare ExperimentalFactors and BioAssay.processingDates to the PCs.SVDValueObjectsvdFactorAnalysis(ExpressionExperiment ee)Compare ExperimentalFactors and BioAssay.processingDates to the PCs.
-
-
-
Method Detail
-
retrieveSvd
@Secured({"IS_AUTHENTICATED_ANONYMOUSLY","ACL_SECURABLE_READ"}) SVDValueObject retrieveSvd(ExpressionExperiment ee)
-
svd
@Secured({"GROUP_USER","ACL_SECURABLE_EDIT"}) SVDValueObject svd(ExpressionExperiment ee) throws SVDException- Throws:
SVDException
-
getTopLoadedVectors
@Secured({"IS_AUTHENTICATED_ANONYMOUSLY","ACL_SECURABLE_READ"}) Map<ProbeLoading,DoubleVectorValueObject> getTopLoadedVectors(ExpressionExperiment ee, int component, int count)
-
hasPca
@Secured({"IS_AUTHENTICATED_ANONYMOUSLY","ACL_SECURABLE_READ"}) boolean hasPca(ExpressionExperiment ee)
-
getImportantFactors
@Secured({"IS_AUTHENTICATED_ANONYMOUSLY","ACL_SECURABLE_READ"}) Set<ExperimentalFactor> getImportantFactors(ExpressionExperiment ee, Collection<ExperimentalFactor> experimentalFactors, Double importanceThreshold)- Parameters:
experimentalFactors- to considerimportanceThreshold- threshold for pvalue of association with factor. Suggested value might be 0.01.ee- the expression experiment- Returns:
- factors which are "significantly" associated with one of the first three PCs
-
svdFactorAnalysis
@Secured({"IS_AUTHENTICATED_ANONYMOUSLY","ACL_SECURABLE_READ"}) SVDValueObject svdFactorAnalysis(PrincipalComponentAnalysis pca)Compare ExperimentalFactors and BioAssay.processingDates to the PCs.- Parameters:
pca- PCA- Returns:
- SVD VO
-
svdFactorAnalysis
@Secured({"IS_AUTHENTICATED_ANONYMOUSLY","ACL_SECURABLE_READ"}) SVDValueObject svdFactorAnalysis(ExpressionExperiment ee)Compare ExperimentalFactors and BioAssay.processingDates to the PCs.- Parameters:
ee- the experiment- Returns:
- SVD VO
-
-