Class ModeratedTstat

java.lang.Object
ubic.basecode.math.linearmodels.ModeratedTstat

public class ModeratedTstat extends Object
Implements methods described in

Smyth, G. K. (2004). Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology Volume 3, Issue 1, Article 3.

R code snippets in comments are from squeezeVar.R in the limma source code.

Author:
paul
  • Field Details

    • TOOSMALL

      public static final double TOOSMALL
  • Constructor Details

    • ModeratedTstat

      public ModeratedTstat()
  • Method Details

    • ebayes

      public static void ebayes(LeastSquaresFit fit)
      Does essentially the same thing as limma::ebayes
      Parameters:
      fit - which will be modified
    • fitFDist

      protected static double[] fitFDist(DoubleMatrix1D vars, DoubleMatrix1D df1s)
    • squeezeVar

      protected static DoubleMatrix1D squeezeVar(DoubleMatrix1D var, DoubleMatrix1D df, LeastSquaresFit fit)
      Ignoring robust and covariate for now
      Parameters:
      var - initial values of estimated residual variance = sigma^2 = rssq/rdof; this will be moderated
      df - vector of degrees of freedom
      fit - will be updated with new info; call fit.summarize() to get updated pvalues etc.
      Returns:
      varPost for testing mostly
    • squeezeVariances

      protected static DoubleMatrix1D squeezeVariances(DoubleMatrix1D var, DoubleMatrix1D df, double[] fit)
      Parameters:
      var - vector of estimated residual variances from original model fit
      df - vector of dfs
      fit - result of fitFDist() (s2.prior and dfPrior)
      Returns:
      vector of squeezed variances (varPost or s2.post)