Package ubic.basecode.math.linearmodels
Interface LinearModelSummary
- All Superinterfaces:
Serializable
-
Field Summary
Fields -
Method Summary
Modifier and TypeMethodDescriptiondouble
@Nullable GenericAnovaResult
getAnova()
double[]
getContrastCoefficients
(String factorName) getContrastCoefficientStderr
(String factorName) For the requested factor, return the standard errors associated with the contrast coefficient estimates.getContrastPValues
(String factorName) getContrastTStats
(String factorName) double[]
double
getFStat()
double
double
double
getKey()
double
double
Overall p value for F stat of model fit (upper tail probability)double
double[]
double
double
double
getSigma()
Residual standard deviationdouble[]
Unscaled standard deviations for the coefficient estimators in same order as coefficients.boolean
isBaseline
(String factorValueName) boolean
Whether this is the result of emprical bayes shrinkage of variance estimates
-
Field Details
-
INTERCEPT_COEFFICIENT_NAME
- See Also:
-
-
Method Details
-
getAnova
@Nullable GenericAnovaResult getAnova()- Returns:
- may be null if ANOVA was not run.
-
getCoefficients
double[] getCoefficients() -
getContrastCoefficients
DoubleMatrix<String,String> getContrastCoefficients()- Returns:
- The contrast coefficients and associated statistics for all tested contrasts.
Row names are the contrasts, for example for a model with one factor "f" with two levels "a" and "b": {"(Intercept)", "fb"}. columns are always {"Estimate" ,"Std. Error", "t value", "Pr(>|t|)"}
-
getContrastCoefficients
-
getContrastCoefficientStderr
For the requested factor, return the standard errors associated with the contrast coefficient estimates. -
getContrastPValues
- Returns:
- Map of pvalues for the given factor. For continuous factors or factors with only one level, there will be just one value. For factors with N>2 levels, there will be N-1 values, one for each contrast (since we compute treatment contrasts to the baseline)
-
getContrastTStats
- Returns:
- Map of T statistics for the given factor. For continuous factors or factors with only one level, there will be just one value. For factors with N>2 levels, there will be N-1 values, one for each contrast (since we compute treatment contrasts to the baseline)
-
getEffects
double[] getEffects() -
getFStat
double getFStat()- Returns:
- F statistic for overall model fit.
-
getFactorNames
- Returns:
- the factorNames
-
getInterceptCoefficient
double getInterceptCoefficient() -
getInterceptPValue
double getInterceptPValue() -
getInterceptTStat
double getInterceptTStat() -
getKey
String getKey() -
getNumeratorDof
double getNumeratorDof() -
getOverallPValue
double getOverallPValue()Overall p value for F stat of model fit (upper tail probability)- Returns:
- value or NaN if it can't be computed for some reason
-
getPriorDof
double getPriorDof()- Returns:
- the priorDof
-
getResidualsDof
double getResidualsDof() -
getResiduals
double[] getResiduals()- Returns:
- the residuals
-
getRSquared
double getRSquared()- Returns:
- the rSquared
-
getAdjRSquared
double getAdjRSquared()- Returns:
- the adjRSquared
-
getSigma
double getSigma()Residual standard deviation -
getStdevUnscaled
double[] getStdevUnscaled()Unscaled standard deviations for the coefficient estimators in same order as coefficients. The standard errors are given by stdev.unscaled * sigma (a la limma) -
isBaseline
-
isShrunken
boolean isShrunken()Whether this is the result of emprical bayes shrinkage of variance estimates
-