Class Dqrsl

java.lang.Object
ubic.basecode.math.linalg.Dqrsl

public class Dqrsl extends Object
This class contains the LINPACK DQRDC (QR decomposition) and DQRSL (QR solve) routines. IMPORTANT: The "_j" suffixes indicate that these routines use Java/C style indexing. For example, you will see for (i = 0; i invalid input: '<' n; i++) rather than for (i = 1; i invalid input: '<'= n; i++) To use the "_j" routines you will have to fill elements 0 through n - 1 rather than elements 1 through n. Versions of these programs that use FORTYRAN style indexing are also available. They end with the suffix "_f77". This class was translated by a statistician from FORTRAN versions of the LINPACK routines. It is NOT an official translation. When public domain Java numerical analysis routines become available from the people who produce LAPACK, then THE CODE PRODUCED BY THE NUMERICAL ANALYSTS SHOULD BE USED. Meanwhile, if you have suggestions for improving this code, please contact Steve Verrill at sverrill@fs.fed.us.
Version:
.5 --- June 5, 1997
Author:
Steve Verrill
  • Constructor Summary

    Constructors
    Constructor
    Description
     
  • Method Summary

    Modifier and Type
    Method
    Description
    static void
    dqrdc_j(double[][] x, int n, int p, double[] qraux, int[] jpvt, int job)
    This method decomposes an n by p matrix X into a product, QR, of an orthogonal n by n matrix Q and an upper triangular n by p matrix R.
    static int
    dqrsl_j(double[][] x, int n, int k, double[] qraux, double[] y, double[] qy, double[] qty, double[] b, double[] rsd, double[] xb, int job)
    This method "applies the output of DQRDC to compute coordinate transformations, projections, and least squares solutions."

    Methods inherited from class java.lang.Object

    clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
  • Constructor Details

    • Dqrsl

      public Dqrsl()
  • Method Details

    • dqrdc_j

      public static void dqrdc_j(double[][] x, int n, int p, double[] qraux, int[] jpvt, int job)
      This method decomposes an n by p matrix X into a product, QR, of an orthogonal n by n matrix Q and an upper triangular n by p matrix R. For details, see the comments in the code. This method is a translation from FORTRAN to Java of the LINPACK subroutine DQRDC. In the LINPACK listing DQRDC is attributed to G.W. Stewart with a date of 8/14/78. Translated by Steve Verrill, February 25, 1997.
      Parameters:
      n - The number of rows of the matrix X
      p - The number of columns of the matrix X
      qraux - This vector "contains further information required to recover the orthogonal part of the decomposition."
      jpvt - This output vector contains pivoting information.
      job - This value indicates whether column pivoting should be performed
      X - The matrix to be decomposed
      work - This vector is used as temporary space
    • dqrsl_j

      public static int dqrsl_j(double[][] x, int n, int k, double[] qraux, double[] y, double[] qy, double[] qty, double[] b, double[] rsd, double[] xb, int job)
      This method "applies the output of DQRDC to compute coordinate transformations, projections, and least squares solutions." For details, see the comments in the code. This method is a translation from FORTRAN to Java of the LINPACK subroutine DQRSL. In the LINPACK listing DQRSL is attributed to G.W. Stewart with a date of 8/14/78. Translated by Steve Verrill, February 27, 1997.
      Parameters:
      n - The number of rows of X
      k - k invalid input: '<'= min(n,p) where p is the number of columns of X
      qraux - This vector "contains further information required to recover the orthogonal part of the decomposition"
      y - This n by 1 vector will be manipulated by DQRSL
      qy - On output, this vector contains Qy if it has been requested
      qty - On output, this vector contains transpose(Q)y if it has been requested
      b - Parameter estimates
      rsd - Residuals
      xb - Predicted values
      job - Specifies what is to be computed (see the code for details)
      X - This n by p matrix contains most of the output from DQRDC