Package ubic.basecode.math.linearmodels
Class ModeratedTstat
- java.lang.Object
-
- ubic.basecode.math.linearmodels.ModeratedTstat
-
public class ModeratedTstat extends Object
Implements methods described inSmyth, G. K. (2004). Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology Volume 3, Issue 1, Article 3.
R code snippets in comments are from squeezeVar.R in the limma source code.
- Author:
- paul
-
-
Field Summary
Fields Modifier and Type Field Description static double
TOOSMALL
-
Constructor Summary
Constructors Constructor Description ModeratedTstat()
-
Method Summary
All Methods Static Methods Concrete Methods Modifier and Type Method Description static void
ebayes(LeastSquaresFit fit)
Does essentially the same thing as limma::ebayesprotected static double[]
fitFDist(cern.colt.matrix.DoubleMatrix1D vars, cern.colt.matrix.DoubleMatrix1D df1s)
protected static cern.colt.matrix.DoubleMatrix1D
squeezeVar(cern.colt.matrix.DoubleMatrix1D var, cern.colt.matrix.DoubleMatrix1D df, LeastSquaresFit fit)
Ignoring robust and covariate for nowprotected static cern.colt.matrix.DoubleMatrix1D
squeezeVariances(cern.colt.matrix.DoubleMatrix1D var, cern.colt.matrix.DoubleMatrix1D df, double[] fit)
-
-
-
Method Detail
-
ebayes
public static void ebayes(LeastSquaresFit fit)
Does essentially the same thing as limma::ebayes- Parameters:
fit
- which will be modified
-
fitFDist
protected static double[] fitFDist(cern.colt.matrix.DoubleMatrix1D vars, cern.colt.matrix.DoubleMatrix1D df1s)
-
squeezeVar
protected static cern.colt.matrix.DoubleMatrix1D squeezeVar(cern.colt.matrix.DoubleMatrix1D var, cern.colt.matrix.DoubleMatrix1D df, LeastSquaresFit fit)
Ignoring robust and covariate for now- Parameters:
var
- initial values of estimated residual variance = sigma^2 = rssq/rdof; this will be moderateddf
- vector of degrees of freedomfit
- will be updated with new info; call fit.summarize() to get updated pvalues etc.- Returns:
- varPost for testing mostly
-
squeezeVariances
protected static cern.colt.matrix.DoubleMatrix1D squeezeVariances(cern.colt.matrix.DoubleMatrix1D var, cern.colt.matrix.DoubleMatrix1D df, double[] fit)
- Parameters:
var
- vector of estimated residual variances from original model fitdf
- vector of dfsfit
- result of fitFDist() (s2.prior and dfPrior)- Returns:
- vector of squeezed variances (varPost or s2.post)
-
-