Class ModeratedTstat


  • public class ModeratedTstat
    extends Object
    Implements methods described in

    Smyth, G. K. (2004). Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology Volume 3, Issue 1, Article 3.

    R code snippets in comments are from squeezeVar.R in the limma source code.

    Author:
    paul
    • Field Detail

      • TOOSMALL

        public static final double TOOSMALL
    • Constructor Detail

      • ModeratedTstat

        public ModeratedTstat()
    • Method Detail

      • ebayes

        public static void ebayes​(LeastSquaresFit fit)
        Does essentially the same thing as limma::ebayes
        Parameters:
        fit - which will be modified
      • fitFDist

        protected static double[] fitFDist​(cern.colt.matrix.DoubleMatrix1D vars,
                                           cern.colt.matrix.DoubleMatrix1D df1s)
      • squeezeVar

        protected static cern.colt.matrix.DoubleMatrix1D squeezeVar​(cern.colt.matrix.DoubleMatrix1D var,
                                                                    cern.colt.matrix.DoubleMatrix1D df,
                                                                    LeastSquaresFit fit)
        Ignoring robust and covariate for now
        Parameters:
        var - initial values of estimated residual variance = sigma^2 = rssq/rdof; this will be moderated
        df - vector of degrees of freedom
        fit - will be updated with new info; call fit.summarize() to get updated pvalues etc.
        Returns:
        varPost for testing mostly
      • squeezeVariances

        protected static cern.colt.matrix.DoubleMatrix1D squeezeVariances​(cern.colt.matrix.DoubleMatrix1D var,
                                                                          cern.colt.matrix.DoubleMatrix1D df,
                                                                          double[] fit)
        Parameters:
        var - vector of estimated residual variances from original model fit
        df - vector of dfs
        fit - result of fitFDist() (s2.prior and dfPrior)
        Returns:
        vector of squeezed variances (varPost or s2.post)