Package ubic.basecode.util.r
Class AbstractRClientTest
- java.lang.Object
-
- ubic.basecode.util.r.AbstractRClientTest
-
- Direct Known Subclasses:
JRIClientTest
,RServeClientTest
public abstract class AbstractRClientTest extends Object
- Author:
- Paul
-
-
Field Summary
Fields Modifier and Type Field Description protected static org.slf4j.Logger
log
-
Constructor Summary
Constructors Constructor Description AbstractRClientTest()
-
Method Summary
-
-
-
Method Detail
-
testAnovaA
public void testAnovaA()
-
testAnovaB
public void testAnovaB()
-
testAnovaC
public void testAnovaC()
-
testAnovaD
public void testAnovaD()
-
testAnovaE
public void testAnovaE()
-
testAnovaF
public void testAnovaF()
One way @
-
testAssignAndRetrieveMatrix
public void testAssignAndRetrieveMatrix()
-
testAssignAndRetrieveMatrixB
public void testAssignAndRetrieveMatrixB()
-
testAssignAndRetrieveMatrixC
public void testAssignAndRetrieveMatrixC()
-
testAssignAndRetrieveMatrixD
public void testAssignAndRetrieveMatrixD()
-
testAssignStringList
public void testAssignStringList()
-
testDataFrameA
public void testDataFrameA()
-
testDoubleArrayTwoDoubleArrayEval
public void testDoubleArrayTwoDoubleArrayEval()
-
testDoubleTwoDoubleArrayEval
public void testDoubleTwoDoubleArrayEval()
-
testExec
public void testExec()
-
testExecDoubleArray
public void testExecDoubleArray()
-
testExecError
public void testExecError()
-
testFactorAssign
public void testFactorAssign()
-
testLimmaA
public void testLimmaA() throws Exception
Also exercises dataFrameEvallibrary(limma) dat<-read.table("data/testdata.txt", header=T, row.names=1) f1<-factor(c("A", "A", "A", "A", "A", "A", "B", "B", "B", "B", "B", "B")); f2<-factor(c("X", "X", "Y", "Y", "Z", "Z", "X", "X", "Y", "Y", "Z", "Z")); cov1<-c( -0.230 , 1.400, -0.210, 0.570, -0.064, 0.980 ,-0.082, -0.094, 0.630, -2.000, 0.640, -0.870); mo<-model.matrix(˜ f1 + f2 + cov1 - 1); contr<-makeContrasts(A-B, levels=mo); fit<-lmFit(dat, mo); fit<-contrasts.fit(fit, contr); fit<-eBayes(fit) res<-topTable(fit)
- Throws:
Exception
-
testLinearModelA
public void testLinearModelA()
Like a two-sample t-test where the intercept is also of interest. @
-
testLinearModelB
public void testLinearModelB()
With a continuous covariate as well a categorical one. @
-
testLinearModelC
public void testLinearModelC()
-
testLinearModelD
public void testLinearModelD()
Basically a one-way anova with 4 levels in the factor. @
-
testLoadLibrary
public void testLoadLibrary()
-
testStringListEval
public void testStringListEval()
-
testStringListEvalB
public void testStringListEvalB()
-
testTTest
public void testTTest()
-
testTTestFail
public void testTTestFail()
-
-