Package ubic.basecode.math.metaanalysis
Class MeanDifferenceMetaAnalysis
- java.lang.Object
-
- ubic.basecode.math.metaanalysis.MetaAnalysis
-
- ubic.basecode.math.metaanalysis.MeanDifferenceMetaAnalysis
-
public class MeanDifferenceMetaAnalysis extends MetaAnalysis
Meta-analysis methods from chapter 18 of Cooper and Hedges, sections 2.1 and 3.1These methods use the standardized mean difference statistic d:
d_i = ( X_i ˆ t - X_i ˆ c ) / s_i
where X i t is the mean of the treatment group in the ith study, X i ct is the mean of the control group in the treatment group in the ith study, and s i is the pooled standard deviation of the two groups. Essentially this is a t statistic.- Author:
- pavlidis
-
-
Constructor Summary
Constructors Constructor Description MeanDifferenceMetaAnalysis(boolean fixed)
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description doublegetBsv()doublegetE()doublegetN()doublegetP()doublegetQ()doublegetV()doublegetZ()doublerun(cern.colt.list.DoubleArrayList effects, cern.colt.list.DoubleArrayList cvar)doublerun(cern.colt.list.DoubleArrayList effects, cern.colt.list.DoubleArrayList controlSizes, cern.colt.list.DoubleArrayList testSizes)doublesamplingVariance(double d, double nC, double nT)CH eqn 18-7cern.colt.list.DoubleArrayListsamplingVariances(cern.colt.list.DoubleArrayList effects, cern.colt.list.DoubleArrayList controlSizes, cern.colt.list.DoubleArrayList testSizes)Run eqn 18-7 on a set of effect sizes.-
Methods inherited from class ubic.basecode.math.metaanalysis.MetaAnalysis
fisherCombineLogPvalues, fisherCombinePvalues, metaFEWeights, metaRESampleVariance, metaREVariance, metaREWeights, metaVariance, metaVariance, metaZscore, qStatistic, qTest, weightedMean, weightedMean
-
-
-
-
Method Detail
-
getBsv
public double getBsv()
-
getE
public double getE()
-
getN
public double getN()
-
getP
public double getP()
-
getQ
public double getQ()
-
getV
public double getV()
-
getZ
public double getZ()
-
run
public double run(cern.colt.list.DoubleArrayList effects, cern.colt.list.DoubleArrayList cvar)- Parameters:
effects-cvar- Conditional variances.- Returns:
-
run
public double run(cern.colt.list.DoubleArrayList effects, cern.colt.list.DoubleArrayList controlSizes, cern.colt.list.DoubleArrayList testSizes)
-
samplingVariance
public double samplingVariance(double d, double nC, double nT)CH eqn 18-7- Parameters:
d- effect sizenC- number of samples in control groupnT- number of samples in test group- Returns:
-
samplingVariances
public cern.colt.list.DoubleArrayList samplingVariances(cern.colt.list.DoubleArrayList effects, cern.colt.list.DoubleArrayList controlSizes, cern.colt.list.DoubleArrayList testSizes)Run eqn 18-7 on a set of effect sizes.- Parameters:
effects-controlSizes-testSizes-- Returns:
-
-