Package ubic.basecode.math.metaanalysis
Class MeanDifferenceMetaAnalysis
- java.lang.Object
-
- ubic.basecode.math.metaanalysis.MetaAnalysis
-
- ubic.basecode.math.metaanalysis.MeanDifferenceMetaAnalysis
-
public class MeanDifferenceMetaAnalysis extends MetaAnalysis
Meta-analysis methods from chapter 18 of Cooper and Hedges, sections 2.1 and 3.1These methods use the standardized mean difference statistic d:
d_i = ( X_i ˆ t - X_i ˆ c ) / s_i
where X i t is the mean of the treatment group in the ith study, X i ct is the mean of the control group in the treatment group in the ith study, and s i is the pooled standard deviation of the two groups. Essentially this is a t statistic.- Author:
- pavlidis
-
-
Constructor Summary
Constructors Constructor Description MeanDifferenceMetaAnalysis(boolean fixed)
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description double
getBsv()
double
getE()
double
getN()
double
getP()
double
getQ()
double
getV()
double
getZ()
double
run(cern.colt.list.DoubleArrayList effects, cern.colt.list.DoubleArrayList cvar)
double
run(cern.colt.list.DoubleArrayList effects, cern.colt.list.DoubleArrayList controlSizes, cern.colt.list.DoubleArrayList testSizes)
double
samplingVariance(double d, double nC, double nT)
CH eqn 18-7cern.colt.list.DoubleArrayList
samplingVariances(cern.colt.list.DoubleArrayList effects, cern.colt.list.DoubleArrayList controlSizes, cern.colt.list.DoubleArrayList testSizes)
Run eqn 18-7 on a set of effect sizes.-
Methods inherited from class ubic.basecode.math.metaanalysis.MetaAnalysis
fisherCombineLogPvalues, fisherCombinePvalues, metaFEWeights, metaRESampleVariance, metaREVariance, metaREWeights, metaVariance, metaVariance, metaZscore, qStatistic, qTest, weightedMean, weightedMean
-
-
-
-
Method Detail
-
getBsv
public double getBsv()
-
getE
public double getE()
-
getN
public double getN()
-
getP
public double getP()
-
getQ
public double getQ()
-
getV
public double getV()
-
getZ
public double getZ()
-
run
public double run(cern.colt.list.DoubleArrayList effects, cern.colt.list.DoubleArrayList cvar)
- Parameters:
effects
-cvar
- Conditional variances.- Returns:
-
run
public double run(cern.colt.list.DoubleArrayList effects, cern.colt.list.DoubleArrayList controlSizes, cern.colt.list.DoubleArrayList testSizes)
-
samplingVariance
public double samplingVariance(double d, double nC, double nT)
CH eqn 18-7- Parameters:
d
- effect sizenC
- number of samples in control groupnT
- number of samples in test group- Returns:
-
samplingVariances
public cern.colt.list.DoubleArrayList samplingVariances(cern.colt.list.DoubleArrayList effects, cern.colt.list.DoubleArrayList controlSizes, cern.colt.list.DoubleArrayList testSizes)
Run eqn 18-7 on a set of effect sizes.- Parameters:
effects
-controlSizes
-testSizes
-- Returns:
-
-