Package ubic.basecode.math.linearmodels
Class MeanVarianceEstimator
- java.lang.Object
-
- ubic.basecode.math.linearmodels.MeanVarianceEstimator
-
public class MeanVarianceEstimator extends Object
Estimate mean-variance relationship and use this to compute weights for least squares fitting. R's limma.voom() Charity Law and Gordon Smyth. See Law et al. {@see http://genomebiology.biomedcentral.com/articles/10.1186/gb-2014-15-2-r29}Running voom() on data matrices with NaNs is not currently supported.
- Author:
- ptan
-
-
Constructor Summary
Constructors Constructor Description MeanVarianceEstimator(cern.colt.matrix.DoubleMatrix2D data)
Generic method for calculating mean and variance, as a data diagnostic.MeanVarianceEstimator(DesignMatrix designMatrix, cern.colt.matrix.DoubleMatrix2D data, cern.colt.matrix.DoubleMatrix1D librarySize)
Executes voom() to calculate weights.MeanVarianceEstimator(DesignMatrix designMatrix, DoubleMatrix<String,String> data, cern.colt.matrix.DoubleMatrix1D librarySize)
Preferred interface if you want control over how the design is set up.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description cern.colt.matrix.DoubleMatrix1D
getLibrarySize()
cern.colt.matrix.DoubleMatrix2D
getLoess()
cern.colt.matrix.DoubleMatrix2D
getMeanVariance()
cern.colt.matrix.DoubleMatrix2D
getNormalizedValue()
cern.colt.matrix.DoubleMatrix2D
getWeights()
protected cern.colt.matrix.DoubleMatrix1D
quarterRootVariance(LeastSquaresFit lsf)
-
-
-
Constructor Detail
-
MeanVarianceEstimator
public MeanVarianceEstimator(DesignMatrix designMatrix, DoubleMatrix<String,String> data, cern.colt.matrix.DoubleMatrix1D librarySize)
Preferred interface if you want control over how the design is set up. Executes voom() to calculate weights.- Parameters:
designMatrix
-data
- expected to be log2cpm, and already filteredlibrarySize
- library size (matrix column sum)
-
MeanVarianceEstimator
public MeanVarianceEstimator(DesignMatrix designMatrix, cern.colt.matrix.DoubleMatrix2D data, cern.colt.matrix.DoubleMatrix1D librarySize)
Executes voom() to calculate weights.- Parameters:
designMatrix
-data
- a normalized count matrixlibrarySize
- library size (matrix column sum)
-
MeanVarianceEstimator
public MeanVarianceEstimator(cern.colt.matrix.DoubleMatrix2D data)
Generic method for calculating mean and variance, as a data diagnostic.voom() is not executed and therefore no weights are calculated.
- Parameters:
data
- data to be processed
-
-
Method Detail
-
getLibrarySize
public cern.colt.matrix.DoubleMatrix1D getLibrarySize()
- Returns:
- total library size
-
getLoess
public cern.colt.matrix.DoubleMatrix2D getLoess()
- Returns:
- the loess fit of the mean-variance relationship
-
getMeanVariance
public cern.colt.matrix.DoubleMatrix2D getMeanVariance()
- Returns:
- the mean and variance of the normalized data, columns 0 and 1 respectively
-
getNormalizedValue
public cern.colt.matrix.DoubleMatrix2D getNormalizedValue()
- Returns:
- data, as supplied (should be log2cpm)
-
getWeights
public cern.colt.matrix.DoubleMatrix2D getWeights()
- Returns:
- inverse variance weights if voom was applied
-
quarterRootVariance
protected cern.colt.matrix.DoubleMatrix1D quarterRootVariance(LeastSquaresFit lsf)
-
-